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MODERN THERMODYNAMICS 

TIMETABLE ARRANGEMENTS 
 

Week 
Teaching  

Week 

Week  

Beginning 

LECTURES 

Monday (4-5pm) 

Renold/C16 

LECTURES 

Thursday (3-4pm) 

Renold/C16 

TUTORIALS 

Thursday (9-10am) 

1 19 22-Jan-18 Ch1: Basic Concepts Ch1: Basic Concepts  - 

2 20 29-Jan-18 Ch2: Work & Heat Ch2: Work & Heat Tutorial 

3 21 05-Feb-18 Ch3: First Law Ch3: First Law  - 

4 22 12-Feb-18 Ch4: Pure Substances Ch4: Pure Substances Tutorial 

5 23 19-Feb-18 Ch5: Open Systems Ch5: Open Systems  - 

6 24 26-Feb-18 Ch6: Gases Ch6: Gases Tutorial 

7 25 05-Mar-18 Ch7: Heat Engines Ch7: Heat Engines  - 

8 26 12-Mar-18 Assignment (online quiz) Review/Examples Tutorial 

9 27 19-Mar-18    

10 28 26-Mar-18    

11 29 02-Apr-18    

12 30 09-Apr-18 Ch8: Entropy Ch8: Entropy  - 

13 31 16-Apr-18 Ch8: Entropy Ch8: Entropy Tutorial 

14 32 23-Apr-18 Review/Past Paper Review/Past Paper  - 

15 33 30-Apr-18 *Review/Past Paper  Review/Past Paper Tutorial 

* NOTE: This session is exceptionally scheduled for Thu 3 May 2018 @ 10-11am in C16 instead of the usual 

Monday 4-5pm) 

COURSE MARKS 
§ Balckboard based quiz (randomised multiple-choice questions) 20% 

§ Final Examination (2 hrs) 80% 

      

REQUIRED COURSE AND DATA BOOK 

§ Thermodynamics-An Engineering Approach (SI Version) (8
th

  Edition) Cengel and Boles 

§ Thermodynamic and Transport Properties of Fluids (5
th

 Edition) 

(This book, also known as the ‘steam table’, is integral to the thermodynamics 

modules this year and therefore each student must have access to a copy). 

Rogers and Mayhew (~£10) 

 

INDICATIVE READING LIST: 

§ Fundamentals of Thermodynamics (8
th

 ed.) Borgnakke and Sonntag 

§ Modern Thermodynamics-From Heat Engines to Dissipative Structures (2
nd

 ed.) 

(rather advanced) 

Kondepudi and Prigogine 

§ Introduction to Thermal Systems Engineering  Moran, Shapiro, Munson, DeWitt 

§ Thermodynamics-for Engineers (2
nd

 ed., Schaum’s outlines)   

(lots of solved problems and good value for money) 

Potter and Somerton 

§ Engineering Thermodynamics: Work and Heat transfer      Rogers and Mayhew 

§ Applied Thermodynamics for Engineering Technologists  Eastop and McConkey 

§ Introduction to Engineering Thermodynamics  Sonntag and Borgnakke 

§ Thermodynamics for Dummies  

(£12/free eBook)  

Pauken  
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DATA SHEETS FOR THERMODYNAMICS 1 (MACE11005) 

1 Work 

· positive work:  is done by a system on the surroundings (a system does positive 
work if it can raise a weight) 

· negative work:  is done by the surroundings on a system. 

Incremental piston, or displacement work , is dW = pdV, and for a process in which the 

pressure varies with volume the work is W = ò pdV 

Constant pressure (isobaric) process:   pV0 = c 

     

Constant volume (isochoric) process:   pV¥= c 

    

Process defined by pV = c 

    

Process defined by  pVn = c 

   5 5 1 1

1

p V p V

n

-
=

-
     

2 First Law of Thermodynamics - closed systems 

 

First Law for a closed system in the absence of kinetic and potential energy 
 

Specific heat at constant volume 

 

Enthalpy, H 
 

Specific enthalpy, h 

 

Specific heat at constant pressure 
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3 Steady flow energy equation 
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Stagnation enthalpy 

 

Velocity at exit to a nozzle 

 

Work from an adiabatic machine 

     

4 Second Law of Thermodynamics 

Efficiency       
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Thermal efficiency of heat engine 

  

Coefficient of performance of refrigerator 

 

Coefficient of performance of heat pump 

 

Relationship between coefficients of performance 

 

Entropy 

 
Central Equation of Thermodynamics 

T d s d u p d v d h v d p= + = -  

Steady flow entropy equation for an adiabatic machine 

( ) 0
i e i

S m s s= - ³S mS m ) ³)S m s ss s((S m (S m s s(  

5 Properties of pure substances 
Dryness fraction, or quality 

                   

6 Perfect gases, and mixtures of perfect gases 

Ideal gas   

Universal Gas Constant, M RÂ =  

S.I. units    Â = 8.3145 kJ/kmol K 

Imperial   Â = 1545 ft.lbf/lb mol °R 

      = 1.986 Btu/lb mol °R 
Molar Masses (kg/kmol) for Common Gases/Elements 
H2:2      O2:32      N2:28      CO:28     CO2:44     H2O:18     C:12  

Internal energy  

Enthalpy   

    

Relationship between cp and cv 

Entropy change 

    ,       ,    

Thermal efficiency
th

, ,h =
Useful work output

Thermal energy input

                                          for a heat engine operating in a cycle .     

Thermal efficiency ,  =
Net work
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CHAPTER 1 
 

 

BASIC CONCEPTS 
 

 

 

 

THE CHAPTER COVERS: 

 

INTRODUCTION TO THE FOUR LAWS OF THERMODYNAMICS   Page 1.2 

DEFINITION OF A SYSTEM        Page 1.3 

DEFINITION OF A PROPERTY       Page 1.5 

DEFINITION OF A STATE        Page 1.8 

DEFINITION OF A PROCESS        Page 1.12 

THERMAL EQUILIBRIUM AND THE ZEROTH LAW    Page 1.13 

APPENDIX: TEMPERATURE        Page 1.16 

TUTORIAL QUESTIONS        Page 1.18 

 

 

 

 

 

 

Read: Thermodynamics (An Engineering Approach by Cengel & Boles – 8
th
 Ed.) - Chapter 1 

“Introduction and Basic Concepts” pages 1-17. 
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Introduction 

Among the multitude of laws that described the workings of the universe there exists some whose 

importance transcends all others.  The isolated phrase “the second law” is often sufficient information in 

itself to inform the intended audience that the second law of thermodynamics is meant.  Thermodynamics 

defines and describes the properties of energy and its transformation from one form to another.  Thus, 

thermodynamics is not simply about steam engines but applies to every aspect of physics invoking energy 

transport; put simply, it applies to all the sciences, be it chemical, electrical, mechanical, nuclear, and 

including natural sciences.  As engineers we are often concerned with the analysis, workings and design of 

large scale systems such as power plants, heat engines, refrigerators, air conditioning, heat pumps etc. and 

consequently our focus (and the focus of thermodynamics) is on the macroscopic rather than the 

microscopic although an atomistic viewpoint (describable by statistical mechanics) can sometimes 

illuminate our conceptual understanding.   

 

Thermodynamics is founded on just four laws: 

 

(i) The Zeroth Law establishes the familiar yet enigmatic property temperature T [K]. 

 

(ii) The First Law establishes the property internal energy U [kJ]. 

 

(iii) The Second Law establishes the (often considered recondite) property entropy S [kJ/K]. 

 

(iv) The Third Law establishes a barrier that prevents the reaching of the temperature absolute zero 

[K]. 

 

The first and second laws are the most useful for practical purposes as they provide us with transport 

equations which can be applied to a moving/stationary control volume, which encompasses the 

thermodynamic system.  The invariance of energy (in an isolated system) is the preserve of the first law 

but what energy changes are permitted is the preserve of the second. 

 

Examples: of areas of application of thermodynamics in Mechanical Engineering  

 

Power generation: a gas turbine for a power station 

 

 

 

 

 

 

 

 

                       Propulsion:  an aircraft gas turbine 
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Propulsion:  a car engine 

 
Definition of a System 

 

Thermodynamics (as with the rest of science) takes familiar words and confers upon them an exact and 

unambiguous meaning. 

 

(i) A system is a collection of matter enclosed within a prescribed boundary.   

(ii) A closed system is a system distinguished by the absence of matter flowing across its 

boundary. 

(iii) An open system is a system distinguished by matter flowing across it boundary. 

(iv) A system is separated from its surroundings by a boundary. The boundary may be fixed or 

may move to contain the prescribed matter. 

(v) The surroundings are everything not contained within the system boundaries.  The 

surroundings can often be considered vast, unaffected by the system (e.g. a bath of water, the 

atmosphere, the world, our solar system, the universe). 

(vi) An isolated system is a system distinguished by the absence of energy flowing across its 

boundary. 

(vii) A control volume is commonly used in the analysis of open systems and is typically defined 

to encompass the space occupied by an open system.  The boundary of the control volume is 

denoted the control surface and matter is free to flow across this boundary. 

 

The control volume concept coupled to their use with transport equations provides us with an 

extraordinarily powerful tool for analysis.  All the classical conservation laws in physics can be described 

mathematically with transport equations, which relate the rate of change of an entity (e.g. mass, energy, 

entropy, etc.) in a control volume to the rate at which that entity passes through the control surface along 

with other transfer mechanisms. 

 

Examples: Closed systems 

 

The system is the air contained in a room with closed windows 

and doors.  In this case the mass and volume of the system are 

constant.   
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The system is the air contained in the cylinder of an engine, and 

now the mass of the system is fixed but the volume varies as the 

piston moves. 

 

 

 

 

 

 

 

Examples: Open systems 

 

Schematic diagram of an open system showing a control 

volume and a control surface. 

 

 

 

 

Schematic of a room with a door and window open: this 

constitutes an open system. 

 

 

 

 

 

 

 

An internal combustion engine with the valves open is an open 

system. 
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Definition of a Property 

 

A property of a system (in broad terms) is an observable characteristic; it can be subdivided into two 

categories; external (mechanical) and internal (thermodynamic).   

 

Typical mechanical properties are: velocity, height, kinetic energy, potential energy and momentum, and 

are measured relative to an external reference frame.  These properties contain combinations of mass, 

position and time, which is sometimes denoted as the mechanical co-ordinates of the system although 

momentum, position and time are the most-favoured mechanical co-ordinates for reasons not discussed 

here.   

 

Thermodynamic properties on the other hand are characteristic of the matter contained within a system at 

equilibrium.  They are measured relative to an observer moving with the system and are sometimes 

denoted the thermodynamic coordinates.  Common thermodynamic properties are: pressure, temperature, 

volume and quality but others occasionally considered are shape (surface effects) and colour (radiation 

heat transfer).  An essential feature of a property is that it has a unique value when a system is in a 

particular state and that this value does not depend on previous states the system may have passed 

through.  Thus a property is not dependent on path and this can be represented mathematically by the 

equation: 

 
2

1

2 1d

f

f

f = f -fò  

 

where f  is the property and 1f  is the value of the property at state 1, 2f  is the value at state 2 and 

2 1f -f  represents the change in the property as the system moves from state 1 to state 2. 

 

The state of a system is its condition as described by giving values to its properties at a particular instant.  

The two-property rule states that the state of a simple (e.g. consisting of a pure substance) closed system 

of constant mass is defined by two independent properties.  Pressure and volume are commonly used to 

define the state of a gas for example. 

 

Thermodynamic properties can be further divided into intensive, extensive and specific properties.  

Intensive properties are independent of the mass (definable at a point) of the system (e.g. pressure, 

temperature, viscosity, thermal conductivity, etc.).  Extensive properties depend on the mass (or extent) of 

the system and therefore apply to the whole system rather than at a point within the system (e.g. volume, 

surface area, mass, energy, enthalpy, entropy, etc.)  Specific properties are a subclass of intensive 

properties obtained on division of extensive properties by the mass (e.g. specific volume, specific heat, 

specific enthalpy, etc.) 

 

Properties can often be combined to form new properties.  For example energy U [kJ], entropy S [kJ/K], 

pressure p [kPa], volume V [
3m ] and temperature T [K] can be combined to give for example enthalpy 

H U pV= +  [kJ], Helmholtz free energy F U ST= -  [kJ] and Gibb’s free energy G H ST= -  [kJ].  

Dividing through by mass m gives specific entities (lower case used in this case): specific enthalpy 

h u p= + n  [kJ/kg], specific Helmholtz free energy f u sT= -  [kJ/kg] and specific Gibb’s free energy 

g h sT= -  [kJ/kg].   

 

Formally: A property is any quantity whose change is fixed by the end states, and is independent of the 

path between the end states. 
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Table. Units for some thermodynamics quantities. 

Quantity Symbol SI Units Preferred Units Imperial Units Conversion 

from Imperial 

to SI multiply 

by: 

length L m m ft 0.3048 

mass m kg kg lbm 0.4536 

time s s s sec 1 

velocity v m/s m/s ft/sec 0.3048 

angular velocity w  rad/s rad/s sec
-1 

1 

force F N kN lbf 4.448 

density r  kg/m
3 

kg/m
3 

lbm/ft
3
 16.02 

specific volume n  m
3
/kg m

3
/kg ft

3
/lbm 0.06242 

pressure p Pa bar lbf/ft
3
 0.04788

310-´  

Energy E (or U) J kJ ft-lbf 1.356 

Heat Q J kJ Btu 1055 

Power WW  W kW ft-lbf/sec 1.356 

specific enthalpy h J/kg kJ/kg Btu/lbm 2.326 

specific entropy s J/kg K kJ/kg K Btu/lbm 
0
R 4.187 

Temperature T K K 
0
R

 
5/9 

 

 

Example Question: Express a pressure gauge reading of 50 psi in kilopascals. 

Solution: 50 
2

lbf

in

é ù´ê úë û

2

2

in
144

ft

é ù
´ê ú

ë û
2

kPa
0.04788 344.74kPa

lbf / ft

é ù =ê úë û
. 

This is gauge pressure but to arrive at absolute pressure (predominantly used in thermodynamics) it is 

necessary to add atmospheric pressure ( 100kPa» ), which gives p 444.74kPa= . 

 

 

Example Question: Identify the extensive and intensive properties: (i) 100 m
3
 volume; (ii) 50 kJ kinetic 

energy; (iii) 70 kPa pressure; (iv) 100 MPa stress; (v) 50 kg mass; (vi) 10 m/s speed and finally; (vii) 

convert all extensive to specific properties given mass m 50kg= . 

 

Solution: (i) Extensive (if mass doubles, then so does V); (ii) Extensive (if mass doubles, then so does E); 

(iii) Intensive (pressure is independent of mass); (iv) Intensive (stress is independent of mass); (v) 

Extensive (mass doubles with mass doubling); (vi) Intensive (speed is independent of mass); (vii) specific 

volume 3V 100
2m / kg

m 50
n = = = ; specific energy 

E 50
1 kJ / kg

m 50
= =  and; specific mass 

m 50
1kg / kg 1

m 50
= = = . 

 

 

 

Example Question: Express the following quantities in base SI units (kg, m, s, K): (i) Power; (ii) Kinetic 

Energy; (iii) specific entropy and (iv) specific weight. 

 

Solution:  
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(i) [ ]
2

2 3

m kg m m kg m
W Fv N

s s s s

é ùé ù é ùé ù = = ´ = ´ = ê úë û ê ú ê úë û ë û ë û
[ ]Fv[ ]ùWW FvFv[ ]WWWW ;  

(ii) [ ]
2 2

2

2

1 m kg m
E mv kg

2 s s

é ù é ùé ù æ ö= = ´ =ê úç ÷ ê úê úë û è øê ú ë ûë û
;  

(iii) [ ]
2 2

2 2

S J Nm kgm m
s

m kg K kg K kgs K s K

é ù é ùé ù é ùé ù= = = = =ê ú ê úê ú ê úê úë û ë û ë û ë û ë û
; 

 (iv) [ ] [ ] 3 2 2 2

mg kg m kg
w g

V m s m s

é ù é ù é ù= = r = ´ =ê ú ê ú ê úë û ë û ë û
.  

 

Note: The ‘specific weight’ is the weight per unit volume of a material, hence showing that the term 

‘specific’ does not always imply ‘per unit mass’. Another example is the ‘specific density’ (specific 

gravity) which is defined as the ratio of the density of a substance (e.g. ρoil) to the density of a given 

reference material (usually ρwater).  
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Definition of a State 

 
The state of a system is a complete description of all the properties of the system, i.e. both the mechanical 

and thermodynamic properties.  A simple system is defined by its volume, pressure, velocity and position. 

 

A system is in the same state (e.g., after a series of processes) if and only if, all the properties are 

identical in both instances. 

 

State point 

The state of a system can be defined in a state space, which is depicted on a state diagram.  The usual 

form of state diagram is two-dimensional, and each of the axes is an independent property.  A state point 

is a point on the diagram representing the properties of the system at any instant.  The state point is an 

equilibrium point. 

 

 

 

 

 A state point on a pressure-volume diagram 

 

 

 

 

 

Change of state 

When the state of a system alters, the change of state is defined by the two end states.  In the figure the 

state changes from (p
1
, V

1
) to (p

2
, V

2
). 

 

 

 

Change of state from ( )1 1p ,V  to ( )2 2p ,V . 

 

Note that four paths are shown on the diagram, and any 

one of these is a possible route between the two states. It 

is not possible (yet) to define the route followed. 
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Important properties 

 

Pressure p 

Pressure is the force per unit area exerted by a system on its surface in the direction normal to that surface.  

Mathematically this can be defined as: 

 

n

A 0

F
p lim

AD ®

D
=

D
,  

 

where 
nFD  is the normal component of force acting on the small surface area AD . 

 

Pressure is a continuum concept, and it is supposed that the number of molecules per unit volume is large.  

This will usually be the case in mechanical engineering.  However, in outer space the number of 

molecules per unit volume will be small, and then the concept of pressure is more difficult to define. 

 

The units of pressure are Newton/square metre denoted by N/m
2
.  This is sometimes referred to as the 

pascal (Pa).  The pascal is an extremely small pressure, so usually multiples of pascals are used.   

Commonly used values are: 

· kilopascals (kPa)  = 103 Pa 

· Megapascals (MPa) = 106 Pa 

· bar   = 105 Pa 

 

The unit of pressure used in this course will be the bar, although different textbooks use different units.  

The bar is a convenient unit because a pressure of 1 bar is almost equal to standard atmospheric pressure 

[1 standard atmosphere = 1.013 bar = 1013 mbar].  Note that the atmospheric pressure quoted in 

meteorological forecasts is in millibars.  It is recognised however that in the atmosphere, pressure varies 

with elevation; described in differential terms by the simple expression dp gdzr= - , where r  is density 

(which depends on z) and g is acceleration (in free fall) due to gravity and 0p  is the pressure at ground 

level identified here by z 0= . 

It is important to appreciate that in the vast majority of thermodynamic relationships absolute pressure is 

used, i.e.  

 

abs gauge atmp p p p= = +  

 

where gaugep  is gauge pressure (measured with a pressure gauge) and atmp  is atmospheric pressure 

(measured with a barometer).  There are a number of devices for measuring pressure, which include: 

 

 Manometers 

 Gauges 

 Electrical transducers 
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Density r 

Density is a continuum concept and is defined as mass per unit volume: 

 

V 0

m
lim

V
r

D ®

D
=

D
 

 

where mD  is the mass in the small region with volume VD .  The units of density are kilograms per cubic 

metre denoted by kg/m
3
. 

 

Specific volume n  

Specific volume is the reciprocal of density and is defined as the volume per unit mass; i.e.  

 

V 0

V 1
lim

m
n

rD ®

D
= =

D
 

 

The units of specific volume are cubic metres per kilogram, denoted by m
3
/kg. 

 

 

 

Example Question: The mass of air in a room of dimensions 2.5 4 10m´ ´  is estimated to be 123 kg. 

Determine the density and specific volume.  

Solution: 
3V 2.5 4 10 100m= ´ ´ = , so 

3

m 123 kg
1.23

V 100 m
r = = =  and 

31 1 m
0.813

1.23 kg
n = = =

r
. 

 

 

Example Question: The pressure in a bike tyre is recorded as 2100 mmHg gauge and the standard 

atmosphere is taken to be 760 mmHg.  Mercury is some 13.6 times heavier than water and the density of 

water is 1000 kg/m
3
 and g 9.81=  m/s

2
.  Express both the absolute and gauge pressures in units of: kPa, 

bar and mmH20. 

 

Solution: The relationship between pressure and height is dp gdz gdhr r= - =  with dh dz= -  (h 

measured downwards), which gives the expression 
gaugep ghr= . 

[ ]3 5

gauge 3 2 2 2

kg m kg m 1
p gh 1000 9.81 13.6 2100 10 m 2.802 10

m s s m
r -é ù é ù é ù= = ´ ´ ´ ´ = ´ ´ê ú ê ú ê úë û ë û ë û

 

    
3

2

N
280.2 10 280.2kPa 2.802bar

m

é ù= ´ = =ê úë û
 

[ ]3 5

atm 3 2 2 2

kg m kg m 1
p gh 1000 9.81 13.6 760 10 m 1.014 10

m s s m
r -é ù é ù é ù= = ´ ´ ´ ´ = ´ ´ê ú ê ú ê úë û ë û ë û

 

    
3

2

N
101.4 10 101.4kPa 1.014bar

m

é ù= ´ = =ê úë û
 

Hence abs gauge atmp p p p 280.2 101.4 381.6kPa 3.816bar= = + = + = =  

In terms of mmH20: gaugep 13.6 2100 28560= ´ =  mmH20, atmp 13.6 760 10336= ´ =  mmH20, thus 

abs gauge atmp p p p 28560 10336 38896= = + = + =  mmH20. 
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Temperature (t or T) 

Temperature is a measure of molecular activity but since classical thermodynamics deals with 

macroscopic properties, molecular definitions are not that useful.  Temperature is a property introduced by 

thermodynamics (the Zeroth law) and since temperature differences drive thermodynamic processes it is 

the most important property for the study of this subject. Temperature is a measure of how "hot" or "cold" 

a body is.  However, in making that measurement it is important that the device used for measuring the 

temperature is in thermal (temperature) equilibrium with the body.  Various (somewhat arbitrary) 

temperature scales have been established.  Celsius [
0
C] (formally called centigrade) and Fahrenheit [

0
F] 

are related by 

 

F C

9
t t 32

5
= +  [

0
F] or ( )C F

5
t t 32

9
= -  [

0
C] 

 

chosen to have 100 
0
C (180 

0
F) between the ice (freezing) point (0 

0
C, 1.013 bar) and the steam (boiling) 

point (100
0
C, 1.013 bar) of water. 

 
Absolute (continuous) scales can be established with the help of the second law (more on this much later), 

Kelvin [K] and Rankine [
0
R] and take the form 

 

R FT t 459.67= +  [
0
R] and CT t 273.15= +  [K]; it follows that 

R

5
T T

9
= , 

 

where T 0K=  (
0

RT 0 R= ) denotes absolute zero, where loosely speaking, all molecular activity stops.  

 

The only way to obtain an accurate measurement of temperature (by a contact method) is when the 

measuring device and the system being measured are at the same temperature; this is referred to as being 

in thermal equilibrium (more on this later). 

 

 

Example Question: The temperature of a body is 
050 F , so what is the temperature in 

0C , K and 
0 R ? 

Solution: 
0

R FT t 459.67 50 459.67 509.67 510 R= + = + = » ,

R

5 5
T T 509.67 283.15 283K

9 9
= = ´ = »  and finally 

0

Ct T 273.15 283.15 273.15 10 C= - = - = . 

 

Example Question: A gas containing pressure vessel with non-uniform wall temperature is suddenly 

isolated (i.e. mass and energy transfer is prevented).  Is the system of gas contained in the pressure vessel 

in thermal equilibrium and if not why not? 

 

Solution: Thermal equilibrium requires a uniform temperature throughout the volume of the system of 

gas.  The non-uniform temperature of the walls of the pressure vessel suggests that this is not the case.  In 

isolation and after a period of time it is expected that a uniform temperature is obtained and thermal 

equilibrium established.  (The thermal behaviour described here is as a consequence of the 2
nd

 law but that 

comes much later in the course). 
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Definition of a Process 

 

Path 

If a system changes state slowly (compared to the reaction time of the system) it passes through a series of 

equilibrium states called a path.  Such a path is shown in the figure below. 

 

Process 

The path through the succession of equilibrium points is called a process. The process in the figure is 

defined by the two end states and the path. 
 

 

 

 

A change of state from state-point A to state-point B, passing 

through a series of equilibrium states. 

 

 

 

 

 

 

Cycle 

A cycle is a process whose end states are identical.  The concept of a cycle is an extremely important one 

in thermodynamics, and many proofs are derived in thermodynamics by considering cyclic processes. 

 

 

 

 

A cyclic change of state from state point A to state point B and 

back to state point A, passing through a series of equilibrium 

points. 

 

 

 

 

 

Relationship between properties 

The state of simple systems of constant mass and composition can be defined by two independent 

properties.  Any other property can be evaluated from these two properties if the characteristics of the 

substance inside the system boundaries are known.  Hence, two independent properties are sufficient to 

define the state of simple systems of constant mass; the two property rule. 
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Thermal equilibrium 

 

Consider two systems, A and B, which are not at the same state, connected through a wall, as shown.  This 

wall can be either a perfect insulator (adiabatic wall) or a perfect conductor (diathermal wall).   

Two closed systems separated by a wall 

 

The state of system A can be defined by any two properties (X, Y), while that of system B can be defined 

by ( X¢ , Y¢ ). For the sake of clarity, let us assume that the state of system A is defined by its pressure p 

and volume V, while the state of system B is defined by pressure p¢  and volume V¢ . If the systems do 

not change state with time then the wall is an adiabatic one.  If the systems spontaneously change state 

then the wall is a diathermal one. 

 

Consider if systems A and B are not at the same state initially.  If they are brought into contact with a 

diathermal wall then their states will spontaneously change until they ultimately reach a steady state: this 

steady state is called thermal equilibrium.  

 

Zeroth law of thermodynamics 

If three systems are brought into contact through a diathermal wall, then the following statement can be 

made after some time. 

· A and C are in thermal equilibrium 

· B and C are in thermal equilibrium 

hence 

· A and B are in thermal equilibrium, even though they are connected through an adiabatic 

wall. 

 

 

This leads directly to the Zeroth law of thermodynamics 

 

Two systems are in thermal equilibrium with each other if they 

are both in thermal equilibrium with a third system. 

 

It is evident that system A and system B must have a common 

property which is given the name temperature. A system is in 

thermal equilibrium if and only if its temperature is uniform.  

Moreover, systems in thermal equilibrium with each other are said 

to be at the same temperature.  A more detailed discussion on this 

can be found in Appendix I. 
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Measurement of temperature 

The method of measuring temperature is to use a system (device) which has an observable property, and 

which can be maintained in thermal equilibrium with the system whose temperature it is required to 

measure.  Such a measuring system will obey the Zeroth Law.  Examples of devices for measuring 

temperature are given in Table 1. 

 

Device type Measurement 

property 

Constant volume gas thermometer pressure 

Constant pressure gas thermometer volume 

Electrical resistance thermometer resistance 

Thermocouple voltage 

Liquid in glass thermometer length 

Table 1:  Different devices for measuring temperature 

 

In each of these devices for measuring temperature one property is maintained constant and another 

varies.  By the two-property rule, if ( )T T x, y= , and if one property is kept constant, say x, then 

( )T T y= , i.e. temperature is a function of y alone.  If x and y were volume (V) and pressure (p) 

respectively, Boyle's Law is observed for different temperatures or different gases. 

 

The method of use of a device for measuring temperature will be examined by considering a constant 

volume gas thermometer.  A fixed volume of gas, indicated by the volume line, is contained in a vessel; 

this volume can be treated as a closed system.  The vessel is immersed in the fluid whose temperature it is 

required to measure, and the volume of gas will change as the temperature changes: the gas obeys the 

perfect gas law pV mRT= . Thus T pV mR= , and since m and R (the specific gas constant) are 

constant for this closed system, then ( )T T p,V= .  If the volume is maintained constant, then ( )T T p=  

and, in this case, p Ta .  Hence, the temperature can be measured by evaluating the pressure required to 

bring the volume back to its initial value.  A graph of TD  against pD  will be a straight line. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig: Schematic diagram of constant volume gas thermometer 

 

Temperature scales 

There are two different scales of temperature: 

 

· The thermodynamic scale of temperature which is independent of the thermometric substance, and 

is based on the Second Law of Thermodynamics; this will be introduced later in the course.  This is 

a continuous scale of temperature. 
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· The International Temperature Scale (ITS-90).  This has been defined by an international group of 

physicists meeting in 1990, and is based on establishing a number of fixed points on the 

temperature scales and interpolating between them.  These are discontinuous scales of temperature 

used primarily for the purpose of equipment calibration. 

 

The Celsius (or Centigrade) and Fahrenheit scales are the original ITS scales.  These scales have been 

refined such that now the triple point of water (to be defined later) is given the temperature of 0.01°C, and 

the boiling point at a pressure of 1 atmosphere is 100°C.  A number of other points are defined at lower 

and higher temperatures, and are defined in the Table below. 

 

 Absolute Temperature (K) Temperature  (°C) 

Triple point of equilibrium hydrogen 13.81 -259.34 

Normal boiling point of equilibrium hydrogen 20.28 -252.87 

Triple point of oxygen 54.36 -218.79 

Normal boiling point of oxygen 90.19 -182.96 

Triple point of water 273.16 0.01 

Normal boiling point of water 373.15 100.00 

Normal freezing point of zinc 692.73 419.58 

Normal freezing point of silver 1235.08 961.93 

Normal freezing point of gold 1337.58 1064.43 

Table:  Additional fixed points on International scale of temperature (just for information) 

 

 

Example Question: A sealed pressurised canister contains gas at a gauge pressure of 1 bar at a 

temperature of 20 0
C and will fail when the gauge pressure reaches 5 bar.  Assuming an ideal gas (i.e. one 

satisfying pV mRT= ) and that atmp 1= bar, determine the temperature at which the canister fails.  It can 

be assumed that the failure mechanism is independent of temperature and that the canister’s internal 

volume hardly changes. 

 

Solution: Please take note that the gas law involves absolute pressure and temperature and for this case 

p mR

T V
= = constant.  It follows that 

( ) 01 2 2
2 1

1 2 1

p p p 5 1 6
T T 20 273 293 879K 606 C

T T p 1 1 2

+
= Þ = = + = ´ = =

+
 

 

A Note on SI Units (for information only) 

Four of the seven SI base units are to be redefined in terms of fundamental constants. 

 

(i) The second (s) remains unchanged tied to the radioactive decay of the caesium-133 atom. 

(ii) The metre (m) remains unchanged tied to the speed of light in a vacuum. 

(iii) The candela (cd) which is a measure of luminous intensity remains unchanged. 

(iv) The kilogram (kg) will in future be tied to the Planck constant 
34h 6.63 10 Js-= ´ . 

(v) The Kelvin (K) will in future be tied to the Boltzmann constant 
23k 1.38 10 J / K-= ´ . 

(vi) The Ampere (A) will in future be tied to the charge of the proton, i.e. 
191e ~1.6 10 C-+ ´ . 

(vii) The Mole (mol) will in future be tied to the Avogadro constant 
23 1

AN 6.022 10 mol-= ´ . 
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APPENDIX: Temperature 

 

In the derivation that follows the concept of temperature is derived via the Zeroth law. In order to do this, 

three systems ‘A’, ‘B’ and ‘C’ are utilised. For the sake of clarity let us assume that the states of systems 

‘A’ and ‘B’ are defined in terms of pressure and volume (hence the cylinder/piston arrangement). It is 

important to realise that using pressure and volume as our reference properties is entirely irrelevant to the 

discussion, and that any two thermodynamic properties would suffice. 

 

Consider the system shown overleaf 

 

 

Systems ‘A’ and ‘B’ are cylinder/piston arrangements. They are 

separated thermodynamically from each other by an adiabatic 

wall. Also under consideration is system ‘C’, which is in thermal 

communication with systems ‘A’ and ‘B’ via the diathermal 

wall. 

Suppose now that the two pistons are allowed to move up and 

down in a prescribed way. 

 

The movement of system ‘A’ and system ‘B’ are plotted on 

separate state diagrams (p-V diagrams in our discussion) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As the piston in system ‘A’ moves up and down, the pressure and volume change. This change is marked 

on the sketch as the locus of points. We imagine that for the whole duration of piston ‘A’s movement, the 

system is in thermal equilibrium with system ‘C’ via the diathermal wall. This implies that if movement of 

the piston ceases, then the conditions inside system ‘A’ will not change spontaneously. The locus of states 

passed through by system ‘A’ under the restriction that it is in thermal equilibrium with system ‘C’ is 

referred to as an isotherm.  

Similarly, we assume that the piston in system ‘B’ also moves up and down, changing its pressure and 

volume as it does so. We note that neither p” nor V” in system ‘B’ need bear any relation to that in ‘A’. 

During piston ‘B’s motion, we again assume that the fluid it compresses is in thermal equilibrium with 

system ‘C’. Again, the locus of points followed by system ‘B’ is shown on the right hand side of the above 

sketches, while the system ‘C’ state point is also shown. 
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Now, if system ‘A’ is in thermal equilibrium at all times with system ‘C’, and system ‘B’ is in thermal 

equilibrium at all times with system ‘C’, then it follows from the zeroth law that system ‘A’ must be in 

thermal equilibrium with system ‘B’. This is despite the fact that systems ‘A’ and ‘B’ cannot communicate 

because of the adiabatic wall. All these systems are in thermal equilibrium with each other, and must share 

a common property. We say that they are at the same temperature. 

 

Systems in thermal equilibrium with each other are said to be at the same temperature. 
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Tutorial Questions 

 
1. Draw a schematic diagram of a gas turbine used for the generation of electrical power.  Show where 

the fuel is admitted and the work output is obtained. 

 

2. Draw a schematic diagram of an aircraft gas turbine, and show where the fuel is admitted and how the 

work output is achieved. 

 

3. Show schematically how the fuel is used in a petrol (spark ignition) engine to produce power output. 

 

4. Figure 1 shows a bottle which is initially empty (contains a vacuum).  It is then filled with water from 

a jug.  Show the system boundaries that enable the process involved to be considered as 

(i) an open system; 

(ii) a closed system. 

 
Fig 1:  Filling a bottle from a jug 

 

5. Define the following properties and give two examples 

(i) intensive; 

(ii) extensive; 

(iii) specific. 

 

6. The term V 2 2  is a(n)  .................................  property of a system:  it represents  ............................   

energy. 

 

7. If you climb a mountain which of the following parameters would be properties of your journey? 

(i) distance; 

(ii) geographical location (latitude and longitude); 

(iii)  height; 

(iv)  time taken. 

 

8. Which of the following pressures is the largest? 

(i)   10
5
 millibars    (ii) 3×10

6
 Pa 

(iii) 105 bar    (iv) 30 MPa 

(iv) 3×10
6
 N/m

2
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CHAPTER 2 
 

 

WORK AND HEAT 
 

 

 

 

THE CHAPTER COVERS: 

 

INTRODUCTION TO THE FIRST LAW OF THERMODYNAMICS    Page 2.2 

QUASI-STATIC PROCESSES         Page 2.4 

FORMS OF WORK          Page 2.6 

POLYTROPIC PROCESSES         Page 2.11 

IS WORK A PROPERTY?         Page 2.12 

HEAT            Page 2.13 

APPENDIX I: MODES OF HEAT TRANSFER       Page 2.17 

APPENDIX II: IS HEAT A PROPERTY?       Page 2.20 

TUTORIAL QUESTIONS         Page 2.21 

 

 

 

 

Read: Thermodynamics (An Engineering Approach by Cengel & Boles – 8
th
 Ed.) - Chapter 2 “Energy, 

Energy Transfer and General Energy Analysis” pages 70-77 and Chapter 4 “Energy Analysis of Closed 

Systems” pages 163-169. 
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Introduction 

 

Understanding the first law of thermodynamics requires some familiarisation with two quantities of 

energy transfer across the boundary of a system: work and heat.  Work is considered in some detail but 

heat is covered in somewhat broader terms since detailed analysis is beyond the scope of a first level 

module (examined further in the third year).  The first law is often considered to be relatively benign (i.e. 

easy to understand) by students being an extension of the law of conservation of energy, which infers that 

energy can neither be created nor destroyed, i.e. whatever energy was present at the start of the universe 

remains the same and will remain invariant until its end.  However, thermodynamics is a subtle subject 

and like the zeroth law (which inferred the existence of the property temperature) the first law infers the 

existence of a property (termed energy); there is no requirement for us to assume a priori that the property 

energy exists.  It transpires that energy is a property of a system yet work and heat are not.  Is this 

obvious? How can it be shown?  How do we quantify work and heat if they are not properties?   

 

Both work and heat are described by their interaction between the system and its surroundings.  For a 

closed system the flow of energy between a system and its surroundings principally takes only one of two 

forms and these forms are work and heat.  But if it is true that work and heat are merely forms of energy 

transfer, then what distinguishes them?   

 

Work is motion against an opposing force and in mechanical terms is the product of force times the 

distance moved in the direction of the force.   In thermodynamic terms however all types of work can be 

shown to be equivalent to raising a weight in a gravitational field.  Heat on the other hand is energy 

transfer resulting from a temperature difference.  Prior to examining these issues in detail it is prudent at 

this point to introduce the first law, which for a closed system in mathematical terms is: 

 

dU Q W= d -d  (or dU Q W= d +d ) depending on the sign convention used for positive work. 

 

The first law relates an increment in energy dU  (a property) to increments in heat Qd  and work Wd  

which are not properties (the notation reflects this).  Surprising as it appears the expression Q Wd -d  is a 

property despite Qd  and Wd  not being so.   

Moreover, the notation used here (i.e. d and d ) requires some explanation but note that (for a non-quasi-

static process, i.e. a real process involving time) dU Udt= Udt , Q Qdtd =Qdt  and W Wdtd = Wdt  with dt  an 

increment of time and 
dU

U
dt

=
dU

U =  but it WOULD NOT BE CORRECT to replace the heat and work rates 

QQ  and WW  with derivatives 
dQ

dt
 and 

dW

dt
, respectively; the use of the symbols d andd  reflects this.  It is 

appreciated however that these nuances require further explanation but are introduced here merely to 

illustrate that the first law is not as obvious as it first appears. 

 

Thermodynamic definition of Work 

 

 

Work is done by a system when the sole effect on everything external to a system (the surroundings) 

would be the raising of a weight. 

 

 

 

This definition reinforces the idea that work is essentially about energy transfer since the potential energy 

(height of the weight) of the surroundings is increased by the system.  Energy in this context is nothing 

more than the capacity to do work and work is something we know about from simple mechanics. 
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Examples 

 

To get the block to move and overcome friction, the 

weight drops.  The surroundings is losing (potential) 

energy and consequently the system must be gaining 

energy by the same amount (assuming no other types 

of loss). 

 

Energy entering the system in this manner is defined 

as negative work done by the system or positive work 

done on the system. 

 

Similarly (possibly confusingly) work done by the 

surroundings is positive but on the surroundings it is 

negative. 

 

 

In order to stir the fluid, the weight must drop and 

work is done on the system is positive. Work done 

by the system on the surroundings is negative. 

Alternatively, one could say that the work done on 

the system by the surroundings is positive. This 

system is dissipating energy (via fluid friction). It 

cannot be reversed. What do you think will happen 

to the fluid? 

 

As the battery discharges through motor the weight is 

lifted and consequently the work done by the system is 

positive. If the weight is allowed to fall (and thereby 

drive the motor), the motor would act as a generator 

and recharge the battery. Work would be done on the 

system is positive. 

 

 

Consider two cases: 

1. As the pressure in the bag increases, the bag expands, 

pushing on the connecting rod and lifting the weight. In 

this case work done by the system is positive. 

2. If the pressure reduces, the bag shrinks, the weight 

lowers and work done by the system is negative. 

 

 

 

 

  

 

 

 

 

System 
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Quasi-Static Processes 

The thermodynamics of principal concern in this course is essentially equilibrium thermodynamics.   

Equilibrium in this case means that, in the absence of external stimuli, the thermodynamic state of the 

system will not change spontaneously.   

Quasi-static change in a system is change that takes place whilst maintaining equilibrium.  On a practical 

level such changes take place very slowly. 

The concept of equilibrium can be demonstrated by analogy to mechanical systems. 

 

 

Mechanical equilibrium: in the absence of external 

stimuli, the ball will remain stationary (external = from 

outside the system). 

 

 

 

 

 

 

 

 

 

 

Not in mechanical equilibrium; even in the absence 

of external stimuli, the state of the system (i.e. the 

position of the ball) changes spontaneously. 

 

 

 

 

 

 

 

By comparison, 

 

Thermodynamic equilibrium; in the absence of 

external influences (heat and work transfers) the 

thermodynamic state is stationary (p & T etc. are 

constant). 

 

Not in thermodynamic equilibrium; in absence of 

external stimulus, pressure waves bounce backwards 

and forwards   

( , ) const

( , ) const

p p t

T T t

Þ = ¹

= ¹

x

x
. 

Pressure and temperature are defined locally in this 

case. 
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The Effect of Work on the Surroundings 

 

It has been shown that work is a kind of energy transfer. Energy can neither be created nor destroyed, 

merely transferred. 

To reiterate, 

· If work is done by a system, it is done on the surroundings.  

If 
sysW 0>  then 

surrW 0<  and 
sys surrW W 0+ =   

· If work is done on a system, it is done by the surroundings.  

If 
sysW 0<  then 

surrW 0>  and 
sys surrW W 0+ =  

where 
sysW  and 

surrW  represent the work done by the system and surroundings, respectively. 

 

Representation of Work 

 

 

The sign convention shown in this sketch is arbitrary. 

Many texts (for example Rogers and Mayhew) use the 

opposite sign convention for work. The actual 

convention used is unimportant, so long as you are 

consistent.  

 

Choosing the Rogers and Mayhew sign convention 

means making sure that all positive work terms in 

your equations become negative and vice versa. 

 

 

 

 

 

 

 

Example Question: The force needed to slowly compress a nonlinear spring (the system) is given by the 

expression [ ]3F 200u 40u N= + , where u  is the displacement of the spring from its original length 

measured in metres. Determine the work done by and on the system along with work done by and on the 

surroundings in compressing the spring by 0.6 m. 

 

Solution: It is observed that energy is being transferred from the surroundings to the spring which 

increases its potential energy (i.e. its capacity to do work).  Thus it must be that case that work done by 

the system is negative, i.e. 
sysW 0<  and work done by the surroundings is positive, i.e. surrW 0> .  

Simply reverse the signs to obtain for work done on the system and surroundings. 

 

The increment of work done by the system is sysW Fdu= -d  and it follows that 

0.6 0.6
0.6

3 2 4

sys sys 0
0 0

W W Fdu (200u 40u )du (100u 10u )d= = - = - + = - +ò ò ò  

     2 4(100 0.6 10 0.6 ) 37.3J= - ´ + ´ = -  

Note that surrW 37.3= J and 
sys surrW W 0+ = , i.e. energy has been conserved (it has merely moved from 

the surroundings to the spring). 
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Different types of work 

‘Mechanical’ work 

‘Mechanical’ work is the type of work covered in A-level and introductory mechanics modules. 

 

1 2 3 1 2 3( ( cosmW F F F du dv dw Fdu F dv F dwd q= · = + + · + + = + + =F du i j k) i j k) F du  

 

where q  is the angle between the vectors F  and du . 

Displacement work 

In thermodynamic systems, one of the most common types of work is displacement work.  Consider a 

constant internal pressure p acting on the surface of a control volume and consider further the control 

volume expanding slightly by the amount dV .  Work is being done by the system on the surroundings. 

 

 

 

 

 

 

 

 
 

 

 

Contribution to the total force F  from pressure p acting on area dA is  

 

= =dF dA np p dA  (n is an outward pointing unit normal and is in the direction of the force dF ) 

 

Contribution to the increment in work done 
D

Wd  (denoted here dAWd ) from pressure p acting on area dA 

where boundary is displaced by du  is 

 

dF du n dudA dAW p dA pdVd = · = · = , where from the geometry n dudAdV dA= ·  

 

Note that the volume increment dAdV  refers to a change in volume resulting from an increment of 

displacement du . 

 

The total increment in work done 
DWd  is obtained on summation (integration), i.e. 

= = = =ò ò òD dA dA dAW W pdV p dV pdVd d  

This (i.e. =d DW pdV ) is one of the most important 

equations you will use in first-year thermodynamics.   

 

For the piston depicted with cross sectional area A 

moving an incremental displacement du ; the formula 

gives 

 

DW pdV pAdud = =   

 

du  

 

n

 

dA  

p  

Control Volume 

Control Surface 
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Example Question: Air is compressed by the action of a piston in a cylinder such that the volume 

changes from 10 to 1 m
3
. The initial pressure is 1 bar.  Assume the process is performed quasi-statically 

and isothermally and that the air behaves as an ideal gas (i.e. it satisfies pV mRT= ).  Determine the 

work done by the system (the air).  Comment also on the work done by the surroundings and the work 

done on the piston, i.e. by any force applied to the piston to compress the air.  

 

Solution: The critical formula is 
DW pdVd =  but note that 

1 1pV mRT p V= =  (since isothermal). 

 

( )
2 2

2

1

1 1

V V
V 22

1 2 D 1 1 1 1 1 1V
1V V

VdV 1
W W pdV P V P V ln V P V ln 1 10 10 ln 2302.6kJ

V V 10
-

æ ö æ ö= = = = = = ´ ´ ´ = -ç ÷ ç ÷
è øè ø

ò ò òd

 

The work done by the system is evidently negative and hence the work done by the surroundings is 

positive.  The work done by the surroundings is also 2302.6kJ .  Note here, that the surroundings include 

the piston.  The work arising as consequence of any force applied to the piston in the surroundings is 

likely to be greater than 2302.6kJ as a consequence of possible losses may have occurred as a 

consequence of friction at the piston walls. 

 

 

 

Example Question: During a particular process, a spherical balloon is inflated from a radius of 0.1m to a 

radius of 0.2m. During this time, the pressure is found to satisfy 
3/ 4p rµ , where r is the radius of the 

balloon. The volume of the sphere is given by the formula ( ) 3

sphereV 4/ 3 r= p .  

(i) Show that the displacement work by the system of gas during the process can be 

written as 
2

1

r

2

1 2

r

W 4 r pdr- = pò  

where p is a function of radius.      

(ii) Derive an equation for the work done on the balloon by the gas during this process. 

(iii) If the constant of proportionality between pressure and radius is 
3 11/ 4k 562 10 N/ m= ´ , calculate the total work done on the balloon. 

Solution:  

(i) The critical formula is DW pdVd =  and since 
34

V r
3

= p  it follows that 
2dV 4 r dr= p  

hence 
2

DW pdV 4 r pdrd = = p  and the result 
2

1

r

2

1 2

r

W 4 r pdr- = pò  immediately follows. 

(ii)  Since 
3/ 4p rµ  it follows that 

3/ 4p kr=  for some constant k, where

[ ] [ ] [ ]3/ 4 3/ 4

2 2 3/ 4 11/ 4

N N N
p kr k m k

m m m m

é ù é ù é ùé ù é ù= = = Þ = =ë û ë ûê ú ê ú ê úë û ë û ë û
 

Therefore 
2 2

2

1

1 1

r r
r

2 11/ 4 15/ 4 15/ 4 15/ 4

1 2 2 1
r

r r

16 k 16 k
W 4 r pdr 4 k r dr r (r r )

15 15
-

p p
= p = p = = -ò ò  

(iii) Assuming 
3 11/ 4k 562 10 N/ m= ´  it follows that 

3
15/ 4 15/ 4 15/ 4 15/ 4

1 2 2 1

16 k 16 562 10
W (r r ) (0.2 0.1 ) 4.171kJ

15 15

-

-

p p ´
= - = - =  
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Work done in Creating a Surface 

 

Consider a soap film in the frame shown.  Let the frame 

be L wide and the wire CD move a distance du .  

The force exerted by the soap film in the wire CD is  

LF G= 2 , 

where G  is surface tension and L  is the length of the 

wire. Note that F resists expansion and the factor 2 comes 

from there being a front and a back to the film. 

 

Therefore, the work done by the system is:

2SW F du Ldu dAd = - = - G = -G , 

where dA  is the surface area created. 

 

Shaft Work 

Consider a shaft running in a turbine. 

 

A shear stress is imposed on the shaft by the blades which 

are, in turn, driven by the flow over them. 

 

The incremental displacement at radius r is du rdq= , 

where dq  is an increment of rotation of the shaft. 

 

The force acting at radius r on area dA  is dF dAt= , 

where t  is the shear stress acting on dA  in a tangential 

direction. 

 

The increment in work done due to dF  and du  is 

 

dAW rd dA dF du dF rd dTdd t q q q= = = =  

where dT  is a contribution to torque T . 

The total increment in shaft work done sWd  is obtained on summation (integration), i.e. 

 

s dA

A A

W W rd dA d rdA d dT Tdd d t q q t q q= = = = =ò ò ò ò  

where T  is the torque acting to the shaft. 

 

 

 

 

 

Example Question: The drive shaft in a motor car delivers a constant 100 Nm torque as it rotates 1000 

revolutions. Calculate the work done delivered by the shaft. 

 

Solution: The important formula is sW Tdd q= , which integrates to give 

2

2

1

1

1 2 s 2 1W W Td T T( ) 100 2 (1000 0) 628.32kJ

q
q

q
q

d q q q q p- = = = = - = ´ - =ò ò  

 

 

 

du  

 

dA  

r  

dF  
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An Observation (incremental work terms look alike) 

 
In the examples just cited, the infinitesimal work done by a system has had the form 

    
k kW F dXd =  

where in the literature, 
kF  is referred to as a generalised force and 

kdX  is called a generalised 

displacement.  

 

 

System Generalised force 
Generalised 

displacement 
Work 

Mechanical (linear) F  (force) du  ·F du  

Mechanical (rotational) T (torque) dq Tdq 

Mechanical (displacement) p (pressure) dV pdV 

Mechanical (stretching) t  (tension) ld  ldt  

Physico-chemical 

(surface tension) 
G  (surface tension) dA  AdG-  

Electrical V  (voltage) edQ  
eVdQ-  
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Polytropic Processes 

Polytropic processes capture many practical thermodynamic compression/expansion processes that satisfy 

the relationship 

constant 0npV n= £ <¥       . 

or equivalently constantnpv = , which obtained on dividing through by 
nm  for mass m. 

 

The constant n is called the polytropic index of expansion or compression (or simply polytropic index) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Processes 1-2, 1-4 and 1-5 are expansions (because the volume increases) whilst processes 2-1, 4-1 

and 5-1 would be compressions.   

 

· Process 1-3 takes place at constant volume.  (isochoric) 

· Process 1-2 takes place at constant pressure.  (isobaric) 

· If pV mRT=  (or pv RT= ), then process 1-4 takes place at constant temperature.  (isothermal) 

· If n g= , where g  is the ratio of specific heats (adiabatic index), then process 1-5 for this 

particular value of n takes place at constant entropy (much more on this much later) (isentropic) 

 

Evaluating the displacement work done in a polytropic process 

Recall that (mechanical) displacement work is =w pdvd . (obtained from W pdVd =  on dividing by m) 

Consider a process described by constn =pν . This can be seen in the sketch below 

 

 

Going from 1-2 with v increasing gives 0d >n . Now 0>p  

therefore 

0d >= vpwd  

 

The area under a p-v curve is evidently of significance. 

 

Set 
npν C=  and observe that 

 

1

1

n n

n

C C
w d Cv dv dv

v n
d n - -= = =

-
 (this last step requires 

1n ¹ ) 
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The elemental work done wd  in the shaded region and total work done in going from 2~1  is obtained 

on summation (integration) to give 
22 2

1 1 1

2 1
1

1 2

1
1 1

vv v n
n n

v v v

C Cv
w w pdv Cv dv dv

n n
d

-
- -

-

é ù
= = = = = ê ú- -ë û
ò ò ò ò  

 

Set 
nn

νpCνp 2211 ==  and it follows that 

1 1

2 2 2 1 1 1
1 2

2 2 1 1

1 1

1

n n n np v ν p ν ν
w

n n

p v p v

n

- -

- = -
- -
-

=
-

  

 

If 1=n , then 
C

p
v

=  and 
1 1 2 2C p v p v= = , so it follows that 

2

1

2 2 2
1 2 1 1 2 2

1 1 1

d
w C Cln p v ln p v ln

n

-
n

æ ö æ ö æ ön n nn
= = = =ç ÷ ç ÷ ç ÷n n n nè ø è ø è ø
ò  

 

 

Example Question: During a particular process, a spherical balloon inflates (quasi-statically) from a 

radius of 0.1m to a radius of 0.2m. During the inflation process the pressure behaves polytropically (i.e. 
npV C= ) with a polytropic index 1

3
n = - . The volume of the sphere is given by the formula 

( ) 3

sphereV 4/ 3 r= p , where r is the radius of the balloon and the initial pressure in the balloon is 1 bar.  

Assuming the inflation process is resisted determine the work done by the system (the gas) on the balloon. 

 

Solution: The formula 2 2 1 1
1 2

p V p V
W

1 n
-

-
=

-
 is applicable here, where ( ) 3

1 1V 4/ 3 r= p , ( ) 3

2 2V 4/ 3 r= p  

and 

1

3
1 2

2 1 1

2 1

V r 0.2
p p p 1 2bar

V r 0.1

-
æ ö æ ö æ ö= = = ´ =ç ÷ ç ÷ ç ÷

è øè ø è ø
.  Substitution gives 

( )

3 3
3 3 3 32 2 1 1 2 2 1 1

1 2 2 2 1 11
3

p V p V p r p r4
W (p r p r ) (2 0.2 1 0.1 ) 100 4.7kJ

1 n 3 1
-

- -
= = p = p - = p ´ - ´ ´ =

- - -
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Is Work a Property? 

Consider the following example to demonstrate (again) how work is not a property.  Consider a system 

which moves between two state points 1 and 2. These state points are defined in terms of two properties. 

For definiteness, the properties of pressure and total volume are used here. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider the work done by the system 

§ By  moving along path I 

§ By moving via state point a, along paths II and III 

The work done by moving along path I is 
1

d 2211

21

21 -

-
== ò

--

-
n

VpVp
VpW

I

. 

The work done moving along paths II and III is òò
----

- +=
21

21 dd
~

IIIaaII

VpVpW . 

Now, along path II, the volume is constant and dv=0 (isochoric process), hence 0d
1

=ò
-- aII

Vp .  

Along path III, p=constant, and 
2 2 2 2 1

2

d ( ) ( )a

a III

p V p V V p V V
- -

= - = -ò  

In general 2 2 1 1
2 2 1( )

1

p V pV
p V V

n

-
¹ -

-
, so it follows that 

2121

~
-- ¹WW . 

i.e. the work transfers are different in general. Given that the end points are the same in each process, but 

the work transfers differ, it can be concluded that work cannot be a property. 

 

Note that since work done is area under a p-v curve it can come as no surprise that 2121

~
-- ¹WW ; apparent 

on simple inspection of the figure above.  
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Heat 

 

Work was a form of energy transfer which is illustrated in an example where a weight is lifted by the 

action of a piston. 

 

 

 

 

 

 

As the fluid in the cylinder expands, the system does 

work on the surroundings (in this case, the 

linkage/weight mechanism).  The work done by the 

system causes a potential energy increase in the weight – 

energy has been transferred to the surroundings). 

 

 

 

 

 

In a similar vein, heat is a form of energy that is transferred from one body to another.  Heat is transferred 

by virtue of a temperature difference.  Heat as a mode of transferring energy, is intrinsically different to 

work as a mode of energy transfer. The difference stems from the Second Law of Thermodynamics 

examined later in the course. 

 

In thermodynamics, processes can be brought about both by temperature differences and forces. This is in 

contrast to mechanics, in which forces alone govern processes. 

 

In a previous section on Work the concept of a quasi-static process was considered.  In order to 

approximate quasi-static processes in thermodynamic systems it is necessary that the processes 

undertaken are infinitely slow (to remove the influence of transients such as pressure waves). The same 

conditions must hold for heat transfer.  The systems considered in 1
st
 year thermodynamics are on the 

whole limited to systems with a single, well defined temperature. 

 

In the kind of thermodynamics considered here the mode of heat transfer is often unimportant but some 

information on this is provided in the Appendix I. 

 

In summary: 

 

Heat (transfer) is the interaction between systems which occurs by virtue of temperature differences. 

 

1. Heat interactions are associated with energy transfers 

2. Heat interactions are transitory phenomena. 

3. Heat is energy transmitted across a boundary. 

4. Heat is NOT a quantity of energy contained in a system. 

5. If two points at different temperatures are brought into contact, then heat is the energy transferred; the 

process ceases when the temperatures are equal (Zeroth Law). 

6. Heat is not a property. (see Appendix II) 

 

Demonstration of point 4. 
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· A similar demonstration led Count Rumford (between 1787-1799) to conclude that heat (or in 

his time, ‘Caloric’) was not an indestructible fluid contained within a body. 

The correct physical phenomena in this 

demonstration are: 

· Friction existing between the duster 

and desktop 

· Work being done on the duster by 

moving it back and forth 

· Work converted to heat by friction. 

 

The incorrect ideas circulating prior to the 

work of Count Rumford were that bodies 

were filled with a mysterious fluid called 

caloric. This fluid was liberated by 

movement, and as it leaked out, it led to 

the body being perceived as warm. In the duster example just quoted, however, we have a simple 

refutation of the caloric theory. The process can continue practically indefinitely, but if heat were 

contained in the body as caloric, then surely it would run out? That is the amount of caloric contained in 

the body would be a finite resource. 

 

Sign Convention and Units 

In this course, the following sign conventions are adopted. 

 

· Heat into a body is positive; 

· Heat out of a body is negative 

 

which are opposite to those adopted for Work.  As with work, total and a specific heat transfer can be 

defined.  The capital letter Q  is reserved for total heat transfer, and use a lower case q for the specific heat 

transfer, i.e. 
Q

q
m

= , where q  is the heat transfer associated with 1kg of working fluid. 

The standard SI unit of heat is the Joule and remember that Nm1J1 = . This emphasises the similarity 

between heat and work. 

 

Example Question: (making use of the first law for closed systems) 

A system, comprising a cylinder enclosed by a piston, is maintained at a constant pressure of 5 bar while 

12.5 kJ of heat is transferred to the cylinder. If the internal energy of the system is unchanged during the 

process, find the change in the system volume as a result of the heat transfer. 

 

 

 

 

 

 

 

 

 

 

 
 

Solution: From the first law of thermodynamics 1 2 1 2 2 1Q W E E 0- -- = - = (here), so it follows that 
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2 2

1 2 1 2 2 1

1 1

Q W pdV p dV p(V V ) p V- -= = = = - = Dò ò . 

Putting the numbers in (watch for inconsistent units) 
3

31 2

5

Q 12.5 10
V 0.025m

p 5 10

- ´
D = = =

´
 

 

An Appreciation of Magnitudes 

 

It is useful to have an appreciation of the ‘size’ of a Joule in relation to tangible, everyday devices. To that 

end, note: 

 

1. 1Cal = 4.1868 J  (Cal = Calories) 

 

2. 1 Calorie is the amount of energy required to raise the temperature of 1 gram of water by 1°C, 

when that water is initially at 15°C. 

 

or, preferably 

 

2b. 1 kilocalorie (kcal) is the amount of energy required to raise the temperature of 1 kg of water by 

1°C, when the water is initially at 15°C. 

 

The figures below give some indication of the energy and the power (energy per unit time) associated with 

some common processes. 
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Heat Processes on State Diagrams 

As discussed previously (under the restriction of quasi-static 

processes) any two thermodynamic state variables can be 

used as axes to sketch the process. The same is true of heat 

transfer.  Provided the heat transfer takes place infinitely 

slowly (to avoid temperature gradients), the system will have 

well defined, single values for pressure, temperature etc.  

Consequently, it is possible to draw the process on a state 

diagram. 

 

 

 

 

 

 

 

Recall our earlier example of the bike pump in Appendix II. 

Either work or heat transfer can be used to move the 

thermodynamic state of the system from an initial point to a 

final point. It follows that it should be possible to devise a 

method by which the system is moved from state point 1 to 

state point 2 by (say) a heat transfer, and returned by (say) a 

work transfer back to state point 1. These processes can be 

drawn on the state diagram as 

       

 

 

 

 

 

 

 

Once one accepts that it is possible to represent both heat 

and work processes on the same diagram, we can think up 

different combinations of heat and work which will move 

the system between states 1 and 2. 

 

 

 

 

 

 

 

 

 

 

 

 

In both cases shown in the previous two sketches, the system ends at the same state point from which it 

starts. The process 1-2-1 shown in the sketches is referred to as a cyclic process. Cycles are of central 

importance in relating heat and work transfer. The manner in which we relate heat and work transfer is via 

the First Law of Thermodynamics. 
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APPENDIX I: Modes of Heat Transfer (for information only) 

 

In the kind of thermodynamics consider here the mode of heat transfer is often unimportant.  For example, 

in order to calculate the thermal efficiency of a power station, it is not necessary to know that turbulent 

convection is responsible for enhanced heat transfer in the boiler. It is nevertheless often helpful when 

trying to understand what heat is to examine the modes by which heat transfer takes place. 

 

There are three modes of heat transfer: 

 

· Conduction; 

· Convection; 

· Radiation. 

 

Conduction 

Conduction can take place in both fluids and solids.  In solids, thermal energy is transmitted by vibrations 

of the atoms about their mean position, and by internal radiation.   

The heat flux q&  through a solid, is the rate at which thermal energy is transmitted and can be related to 

the temperature gradient using Fourier’s Law of heat conduction, which in one-dimensional problems can 

be written as 

     
dx

dT
q l-=& . 

The negative sign indicates that the heat flow is down the temperature gradient. 

 

Example Question: 
Calculate the heat flux through 1m

2
 of a household wall on a cold and stormy night.  Assume that outside, 

it is 0°C and inside it is 20°C. Assume also that the wall consists of a single layer of bricks, 100 mm thick, 

with a constant thermal conductivity 0.5l =  W/mK. 

 

Solution: Fourier law 
dT

q
dx

l=-
dT

q
d

l=-  can be applied in differential form, i.e. Txq dd l-=& , which can be 

integrated to give 2 1 2 1( ) ( )q x x T Tl- = - -( )q( )( )2 1 22 1 22 1 2)))  or equivalently 
T

q
x

l
D

= -
D
T

q l
D

= -
D

. 

Here TD is the temperature difference between the inside and the outside of the wall, and xD is the wall 

thickness. Putting in the numbers gives 

3 2

0 20 W
0.5 100

(0 100) 10 m
q

-

-
= - = -

- ´
0.5

(0
q = -0.5  

 

In metals, the conduction process is further enhanced by the additional redistribution of energy arising 

from the large number of electrons drifting through the material.  This explains why good electrical 

conductors are usually also good thermal conductors. 

 

Conduction is also found in fluids.  Unlike solids, fluids do not have a regular lattice structure.  Rather, 

atoms are allowed to move about more or less at random.  The average spacing between atoms in a fluid is 

much larger than in a solid.  This large degree of molecular spacing, coupled with their random motion 

means that the molecules in fluids have a large mean free path.  The mean free path is the average 

distance a particle can move before being influenced by another particle.   Consequently, it takes longer 

for thermal energy to be transmitted between particles and hence, thermal conductivity in fluids is usually 

lower than that of a solid. 
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Convection 

This mode of heat transfer occurs exclusively in fluids.  We can identify two types of convective heat 

transfer; natural and forced. 

 

Natural Convection 

Imagine a heated surface, mounted horizontally, and above which is a fluid. 

 

 

 

The layer immediately adjacent to the hot surface is heated 

by conduction.  As the fluid elements heat up, their density 

diminishes, and buoyancy forces lift them up away from 

the surface.  Cool fluid replaces the hot fluid as it rises, and 

the process begins again. 

 

 

 

 

 

 

 

 

Natural convection is responsible for heating in rooms and the onshore breezes found in the afternoon in 

hot parts of the world. 

 

 

Forced Convection 

In most engineering applications, forced convection is the prevalent mode of convective heat transfer.  

Like the natural convection case, fluid close to a hot surface is initially heated by conduction. 

 

Industrial flows are usually 

turbulent.  For the purpose of our 

discussion turbulence can be 

thought of as consisting of a large 

number of vortices of differing 

sizes.  The practical consequence 

for us is that turbulence introduces 

mixing – hot elements are mixed 

out away from the surface, and 

cool elements are mixed in; thus 

heat is again transferred from the surface. 
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In convective heat transfer, exact analytic expressions for the heat transfer rate are seldom available.  For 

engineering calculations heat flux is approximated by 

 

( )S Bq h T T= -q h (hh (((  

 

where  h  is an heat transfer coefficient, 
ST  is surface temperature and 

BT  is bulk fluid temperature. 

 

Radiation 

This mode of heat transfer is electromagnetic in origin, and requires no medium through which to pass.  

For most engineering processes, radiation plays a relatively minor part.  At this stage, it suffices to say that 

the radiative heat flux q&  can be approximated using 

 

     
4 4

H Cq (T T )=es -4 4q (T4 4

H C(T4 4

H C
 

 

where e  is the emissivity (a number between 0 and 1 where 1=e  for a black body) and s  Stefan-

Boltzmann Constant = 5.67051 x  10
-8

 
2 4W m K . 
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APPENDIX II: Is Heat a property? 

 

To answer this question, consider a bike pump.  

 

 

 

 

 

 

 

 

Suppose initially, the air inside the pump is at atmospheric conditions, call these p1 and T1. Push the piston 

forward, what happens? 

 

· Pressure and temperature go up to p2, T2. 

· Work is done on the system.  

 

Now, suppose instead, a burner is placed under it, what happens? 

 

 

 

· Pressure and temperature goes up 

· Heat has been transferred to the system. 

 

The experiment can be designed so that, in both cases, the final temperatures and pressures are the same. 

 

· In the first case,  the heat input ;0 kJQ =  

· In the second case, the heat input kJQ 0¹ . 

 

 

But, we have the same initial and final states but different heat transfers 

In summary: 

·  Q (or q) is not a property; 

· We denote an infinitesimal quantity of heat as ( )Q or qd d . We do this to draw 

attention to the fact that Q (or q) is not a property. We reserve the symbol `d` for 

changes in properties 
2 2

1 2 1 2

1 1

,Q Q q qd d- -= =ò ò  

· Compare this notation with that used for the change of a property like specific volume 

ò -=
2

1

12d vvv   
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Tutorial Questions 
 

 
1. A block with a mass of 1kg is raised a height of 1m; what is the work done? [9.81J] 

 

2. A block with a mass of 1kg is pushed along a surface for a distance of 1m. If the coefficient of friction 

between the block and the surface is 0.2, what is the work done? [1.96J] 

 

3. A cylinder contains a gas at an initial pressure and volume of 10bar and 1m
3
 respectively. The gas is 

expanded to 2m
3
 according to the following laws: 

i. .Constp =  [1MJ] 

ii. .ConstpV =  [693.1kJ] 

iii. .4.1 ConstpV =  [605.5kJ] 

Calculate the work done in each case. Which is the largest, and why? 

 

4. A spherical balloon has a diameter of 0.3m and contains air at a pressure of 1.5 bar.  The diameter of 

the balloon increases to 0.33m and during this process the pressure is inversely proportional to the 

diameter.  Calculate the work done by the air during the process. [0.668kJ] 

 

5. A gas is compressed according to the law .ConstpV =  The initial pressure and volume are 5 bar and 

1m3 and the work done on the air is 170 kJ.  Determine the final pressure [7.03 bar] 
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CHAPTER 3 

 
THE FIRST LAW AND ENERGY TRANSFER 

 

 

 

 

THE CHAPTER COVERS: 

 

THE FIRST LAW OF THERMODYNAMICS       Page 3.2 

CYCLIC PROCESSES          Page 3.3 

INTRINSIC INTERNAL ENERGY U        Page 3.3 

THE GENERAL FORM OF THE FIRST LAW       Page 3.5 

RATE FORMS OF THE FIRST LAW         Page 3.6 

APPLICATIONS OF THE FIRST LAW TO CLOSED SYSTEMS    Page 3.8 

SPECIFIC HEAT CAPACITIES vc  AND 
pc         Page 3.9 

SPECIFIC ENTHALPY h u pn= +  AND ENTHALPY H U pV= +     Page 3.11 

TUTORIAL QUESTIONS         Page 3.13 

 

 

 

 

 

 

Read: Thermodynamics (An Engineering Approach by Cengel & Boles – 8
th
 Ed.) - Chapter 2 “Energy, 

Energy Transfer and General Energy Analysis” pages 70-77 and Chapter 4 “Energy Analysis of Closed 

Systems” pages 169-187. 
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Introduction 

 

As mentioned in previous notes the first law of thermodynamics gives rise to intrinsic internal energy U.  

However, it gives no indication to what U actually is other than it being a property of a system.  In this 

respect it is rather similar to the zeroth law which establishes temperature yet gives little insight to what 

temperature actually is.  Further insight about temperature, work heat and energy can be gleaned on 

consideration of the molecular world.  Quantum mechanics reveals that energy is not continuous but is 

discrete.  From this point of view temperature is the parameter that determines the most probable 

distribution of populations of molecules over the available energy states of a system at equilibrium.  Work 

on the other hand is a form of energy transfer that makes use of the uniform motion of atoms in the 

surroundings (movement of piston, lifting of a weight, etc.). Similarly heat is the form of energy transfer 

that makes use of the random motion of atoms in the surroundings.  Thus work is organised energy 

transfer and heat is random and this distinction is worth bearing in mind.  Energy associated with 

molecules can be viewed in purely mechanical terms (neglecting nuclear and chemical) and U is no more 

than a measure of the potential and kinetic energy of molecules although classical thermodynamics makes 

no reference to this fact.  It is established in this section that U is a property of the system, i.e. it does not 

depend on path.  Thus whilst energy can be transferred to a system by means of work and heat, once the 

energy is inside a system then the system has no “knowledge” of how the energy was transferred.  The 

system has no “knowledge” of the past (is not history (path) dependent) which is of course what defines a 

property.  Distinguishing between heat and work is done in the surroundings, i.e. raising or lowering 

temperature or lifting or lowering a weight.   

 

The First Law of Thermodynamics 

 

The equivalence between work and heat (from the point of view of its effect on a system) was established 

by Joule between 1840 and 1848.  Joule was led to postulate the First Law of Thermodynamics. 

 

When a system executes a cyclic process, the algebraic sum of the work transfers is proportional to the 

algebraic sum of the heat transfers. 

 

This can be written mathematically as:  
C C

Q Wd µ dò ò  or 
C C

J Q Wd = dò òJò òdQQQ , where JJ  is a constant 

referred to as the mechanical equivalent of heat and C represented a closed contour or a cycle.  JJ  is a 

conversion factor to allow for the different units which may be used for heat and work transfer. In 

Imperial units J 778ftlb./Btu=J 778ftlbJ 7J 7  whilst in SI units J 1=J 1 since both work and heat are measured in Joules 

(the SI system is rational). 

The First Law of Thermodynamics applicable to a cycle is:

 ( )JδQ W 0
C

d- =ò JδQ WdWWWW  

Often however, in engineering applications, the system may 

not undergo a cycle.  An example of this might be an air 

bag in a car. 

Clearly, in this case, the airbag does not undergo a cyclic 

process. For this problem, how do we perform a 

thermodynamic analysis on the system? The answer lies in 

the fact that, although the relationship ( ) 0
C

J Q Wd d- =ò J Q Wd dJ Q WJ Q WW  

applies only to cyclic processes, the equation implies the existence of a thermodynamic property to be 

found in the system.  That property is called energy.  
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Cyclic Process 

Whenever a system undergoes a process, and the state of the system returns to its original values, then the 

process is called a cyclic process. The diagram below illustrates stirring process which raises the 

temperature of a liquid which is then placed in a bath to return it to its original value. The process 1 ~ 2 ~ 

1 is a cyclic process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

· Raised the temperature the water by work transfer, i.e. by 
sWW  

· Cooled the water by heat transfer 

· As far as the system is concerned, the heat and work transfers are equivalent i.e. either process (or a 

mixture of both) can be made to produce the same changes of state in the working fluid. 

 

Intrinsic Energy U 

Consider two cyclic processes 1-A-2-B-1 and 1-A-2-C-1, for a closed system, where X and Y are two 

independent properties. 

 

From the First Law, for the cycle 1-A-2-B-1 

 

( ) ( )
1 A 2 2 B 1

Q W Q W 0
- - - -

d -d + d -d =ò ò  

Similarly for the cycle 1-A-2-C-1 

( ) ( ) 0
1221

=-+- òò
---- CA

WQWQ dddd  

Equating these gives 

( ) ( ) ( ) ( )òòòò
--------

-+-=-+-
12211221 CABA

WQWQWQWQ dddddddd

 

or 

( ) ( )òò
----

-=-
1212 CB

WQWQ dddd  

 

In view of the fact that neither Qd  nor Wd  is a property, i.e. in general in mathematically terms 
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 òòòò
--------

=/=/
12121212

,,
CBCB

WWQQ dddd  

 

It can be immediately inferred that the value of the combination of terms Q Wd -d  between points 1 and 

2 is numerically the same regardless of whether path ‘B’ or path ‘C’ is traversed.  Recalling that a quantity 

which is independent of the path followed and depends only on the end points is called a property.  As a 

property depends only on the initial and final states it follows that 

 ( ) ( ) ( )
2

2 1

2 B 1 2 C 1 1

Q W Q W Q W U U
- - - -

d -d = d -d = d -d = -ò ò ò  

 

where the 1 and 2 refer to the initial and final states, respectively and 2 1U U-  is the change of a 

thermodynamic property called the intrinsic internal energy.  This relationship can also be written in 

incremental form, i.e. Q W dUd -d = . 

From the first law of thermodynamics, a number of useful consequences can be derived. These 

consequences are called corollaries. 

 

Corollary 1 

There exists a property of a closed system such that a change in its value is equal to the net heat and work 

transfers occurring during any change of state.  This property is called the internal energy and is denoted 

by U . 

   

2 2

1 2 1 2 2 1

1 1

Q W Q W U U- -- = d - d = -ò ò  

Corollary 2 

The internal energy of a closed system remains unchanged if the system is isolated from its surroundings. 

 

Proof: Isolation, by definition implies work and heat transfers to the system or from the system are zero. 

Hence 2 1U U 0 U const.- = Þ =  

 

 

Corollary 3 

A Perpetual Motion Machine of the first kind (a PMM 1) is impossible. 

 

Proof: We define a perpetual motion machine of the first kind as a device that continually produces a net 

work output without absorbing energy from its surroundings. Schematically, this is depicted as: 

 

 

From the sketch: 1 2Q 0, W 0- = ³ , i.e. work is 

produced. It follows therefore that                

1 2 2 1W U U-- = -  

i.e. to produce work, the internal energy of the system 

must reduce.  To produce work continuously forever 

(without energy transfer to the system), the internal 

energy of the system would have to be initially infinite! 
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The general form of the First Law 

A somewhat more general form of the energy equation is 

( ) ( )
2

1 2 1 2 2 1 p k p k

1

Q W Q W E E E E E U E E U- -- = d -d = - = D = D + + =D +D +Dò  

where kinetic energy 
21

k 2
E mv=  & ( )2 21

k 2 12
E m v vD = - , potential energy 

pE mgz=  & 

( )p 2 1E mg z zD = - , intrinsic internal energy U mu=  & ( )2 1U m u uD = - , which on substitution 

gives 

( )
2 2

2 1
1 2 1 2 2 2 1 1 2 1

v v
Q W m gz u m gz u m e e

2 2
- -

ì ü ì ü
- = + + - + + = -í ý í ý

î þ î þ
. 

This is the most general form of the First Law on the 1
st
 year course and on dividing through by m gives  

 

     1 2 1 2 2 1q w e e- -- = -  

 

where 1 2q -  and 1 2w -  are the specific heat and work transfers (i.e. the amount of heat and work transferred  

per unit mass in the system). 

 

Example Question: Confirm the consistency of the units on the right hand side of the First Law of 

thermodynamics: 1 2 1 2 2 1q w e e- -- = - , where 
21

2
e gz v u= + + . 

 

Solution: Recall that, if dealing with specific quantities 

        

Quantity Units 

Intrinsic internal energy ( u ) J/kg 

Kinetic energy (
21

2
v ) m

2
/s

2 

Potential energy ( gz ) 
m

s

m
´

2
 

It is clear that kinetic and potential energies have the same units, i.e. 
2 2m / s .  For the internal energy 
2

2 2

J Nm kg m m m

kg kg s kg s

é ù é ù é ù
= = ´ =ê ú ê ú ê ú

ë û ë û ë û
 

and hence the units used in the first law are consistent (as expected). 

 

Important points: 

1. All of the terms have consistent units; 

2. Do not mix units (i.e. specific/absolute etc.); 

3. Watch for consistency (i.e. do not mix kJ/kg for u with m/s for v). 

 

The differential form of the first law 

Up until now, the first law has been written in either of the integral forms 

( )

( )

2

1 2 1 2 2 1

1

2

1 2 1 2 2 1

1

Q W Q W E E

q w q w e e

- -

- -

- = d -d = -

- = d -d = -

ò

ò
. 
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An alternative, equivalent formulation can be written as (in terms of specific quantities) 

 

( )21
2

q w de gdz d v dud -d = = + +  

 

which is the differential form of the first law. The advantage of this latter form is that it is often possible to 

write qd  and wd in terms of state variables and thereby obtain analytic relationships between the heat and 

work transfers, and the internal energy. One obstacle to this approach is that the process must be quasi-

static in order to submit to such an analysis. For example, in the absence of kinetic and potential terms the 

first law gives 

q w dud -d = . 

 

In the case of displacement work w pdvd =  (the system boundary moves) and the first law gives  

 

q pdv dud - =  

 

which can be integrated to relate the heat transfer to the changes in internal energy and specific volume. 

However, recall that w pdvd =  only holds for quasi-static processes - ones in which there are no pressure 

gradients. If the process is not quasi-static, then w pdvd ¹ , and the previous analytic steps would be 

invalid. 

 

It is important to appreciate however that the first law is not limited to quasi-static analysis since 

1 2 1 2 2 1Q W E E- -- = - is always true (it is the conservation of energy). 

 

Rate forms of the First Law  

Rate forms of the first law are not directly applicable to quasi-static processes since rates are invariably 

zero and time is not an explicit feature.  Nevertheless change involves the passage of time and a slowly 

varying process can provide a good approximation of a quasi-static process with finite rates.  As 

mentioned in previous notes (on neglect of kinetic and gravitational potential energy) the differential form 

of the energy equation for a closed system is dU Q W= d -d .  The notation used here (i.e. d and d ) 

refers to incremental change and change advances with time, hence dU Udt= Udt , Q Qdtd =Qdt  and 

W Wdtd = Wdt  with dt  an increment of time.  Substitution of these expressions into the energy equation 

reveals the rate form 

 

dU
U Q W

dt
= = -

dU
U Q W

dU
QQQ WQQ  

 

where it is recognised that the time derivative of U is appropriate arising because U is a property, i.e. U is 

a well defined function. It is generally incorrect to replace the heat and work rates QQ  and WW  with 

derivatives 
dQ

dt
 and 

dW

dt
, i.e. 

dQ
Q

dt
¹

dQ
Q ¹  and 

dW
W

dt
¹

dW
W ¹ , since Q  and W  are meaningless in general (heat 

and work are not properties of a system). 
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Control volume analysis (this is rather tricky) 

Consider a control volume identified by all the points in a continuous set W  and total volume given by the 

integral dV
W
ò  and surrounded by a boundary G  whose surface area is the integral dA

G
ò .   

 

 

 

 

 

 

 

 

 

 

 

The expectation here is that U can be expressed using a volume integral whilst QQ  and WW  involve surface 

integrals since we have discovered that heat and work are forms of energy transfer between a system and 

the surroundings.  The expressions are: 

 

U udm
W

= ò , Q qdA
G

= òQ qòqdAqdA  and W dA
G

= ×ò vW dò t  (work rate (power) considered here) 

 

where 
1dm dV dV-= r = n , r  is density, qq  is heat flux (rate per unit area-see previous notes) whilst t  is 

a surface stress (i.e. force per unit area and d dA=F t  - see previous notes). Note that a displacement 

power flux is of the form stress times velocity. 

The rate form of the energy equation is a rather tricky looking equation of the form 

 

d
udm qdA dA

dt W G G

= - ×ò ò ò vòqdAqdAqdA t   (although complicated looking this is simply U Q W= -U Q WQQ WQ ) 

 

where p= nt  for pressure displacement work. 

The energy equation in this form is not examined this year but is presented here to emphasise the 

distinction between d and d  or equivalently the time derivative and rate, which is readily apparent on 

contrasting the left and right hand sides of this equation. 

Kinetic and potential energy can be readily incorporated to give an even more complex-looking equation, 

i.e. 

 

( )21
2

d
u v gz dm qdA dA

dt W G G

+ + = - ×ò ò ò vòqdAdAqdA t     (i.e. E Q W= -E Q WQQ WQ )  

n

 

Control Volume 

W  

G  

Control Surface 
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Applications of the First law to closed systems 

 

Constant volume processes and vc  

Consider a rigid vessel whose volume is effectively invariant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The vessel is a closed system and is therefore amenable to the first law equations discussed above. 

 

Heating processes in rigid vessels 

Suppose heat is transferred to the vessel, so 0qd >  and evidently no work is done by the system.  The 

energy equation reduces to dq ed =  but the vessel is not moving and suffers no change in elevation so 

dq ud =  applies.   In this instance the change in internal energy of the working fluid is equal to the 

quantity of heat transferred. 

 

Is there any way we can relate heat transfer to temperature change? 

 

§ The temperature change of the working fluid is related to the heat transfer via the specific heat 

capacity at constant volume, vc  

 

Definition 

The specific heat capacity c is defined mathematically as 

T

q
c

¶

¶
=  

J

kgK

é ù
ê ú
ë û

 

where T  is the absolute temperature and 
T

¶
¶

 represents a partial derivative with respect to temperature. 

In words, the specific heat capacity is a measure of the amount of heat you have to transfer qd  (in order 

to bring about a temperature change dT). 

It is worth pausing for a moment to reflect on the derivative 
q

T

¶
¶

 as this appears to suggest that q  is 

defined, which appears contrary to previous discussions and the use of the symbol d .  Although true in 

general it transpires q  can be defined provided a path is specified (i.e. constant temperature, constant 

pressure, etc) and the process of change is infinitely slow (i.e. quasi-static). Thus it is not enough to define 

c  in isolation since processes can take place at constant volume or constant pressure, and the process 

effects the value of the specific heat capacity (since q is path dependent).  It is useful to define two specific 

heat capacities; 
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p

p

q
c specific heat at constant volume

T

q
c specific heat at constant pressure

T

n
n

¶æ ö= =ç ÷¶è ø

¶æ ö= =ç ÷¶è ø

 

 

In the vessel above, the volume is constant (n =constant), and the first law provided uq d=d  and hence it 

follows that on dividing both sides by the incremental temperature dT : 

v

q u
c

T Tn n

¶ ¶æ ö æ ö= =ç ÷ ç ÷¶ ¶è ø è ø
. 

where vc  then is the rate of change of internal energy with temperature, providing the fluid volume is 

maintained constant during the process. 

 

Example Question: A rigid vessel contains a mass of 10kg of a particular fluid. The fluid has a constant 

specific heat capacity of 0.718vc =  kJ/kgK. If 1 MJ of heat is transferred out of the vessel, calculate the 

change in temperature of the fluid 

 

Solution:  A rigid vessel implies 0d =v , therefore, displacement work is zero, and there are no shafts etc. 

sticking out of the system.  It follows that q dud = .  Since 
v

v

u
c

T

¶æ ö= ç ÷¶è ø
 the energy equation 

vq du c dTd = =  can be integrated to give 

( )
2 2

1 2 v 2 1

1 1

Q Q m c dT mc T T mc T- n nd = = = - = Dò ò . 

since specific heat is a constant in this case.  It follows that 
6

1 2

v

Q 1 10
T 139K

mc 10 718

- - ´
D = = = -

´
. 

Observe that T 0D < , i.e. 2 1T T< , which is expected since the vessel is cooled by the heat transfer. 

 

Pitfalls of the specific heat capacity 

This sketch demonstrates pictorially how the specific heat 

capacity vc  is the gradient of the u-curve on the internal 

energy-temperature graph. 

However, care must be taken since cn  is not always well 

defined. If for example one considers the boiling of water. 

What happens when water boils? 

§ Heat is added. 

§ There is a phase change. 

§ The temperature stays constant until all of the  

            water has boiled. 

 

This means that during the evaporation process, q 0d ¹  and 

dT 0=  which in turn implies that 
q

c
T

n
n

¶æ ö= ®¥ç ÷¶è ø
 for 

evaporation.  Thus specific heat capacity is not an appropriate concept when dealing with phase changes 

(more on this later). 

 

U
ni

ve
rs

ity
 o

f M
an

ch
es

te
r 

- 
D

r 
A

m
ir 

K
es

hm
iri



CHAPTER 3: THE FIRST LAW AND ENERGY TRANSFER 

 

MODERN THERMODYNAMICS  F i r s t  L a w  | 3.10 

 

Work processes in rigid vessels 

Consider again our rigid vessel but in this case shaft work is performed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first law applied to this system becomes uwq s d=-dd .  Assume further that the vessel has no heat 

transferred to or from it, i.e. 0=qd . When a process involves no heat transfer, it is said to be adiabatic. 

For this system, the first law becomes 

uws d=-d . 

Notice the negative sign appearing before swd . 

§ If work is done on the system, 

( ) 0

,0

>=-

\<

duw

w

s

s

d

d
 

§ If work is done by the system 

( ) 0

,0

<=-

\>

duw

w

s

s

d

d
 

An adiabatic system must draw upon its internal energy to do work, and it can top up its internal energy if 

work is done on it. 

 

Example Question: A thermally insulated rigid vessel contains a mass of 10kg of a particular fluid. The 

fluid has a constant specific heat capacity of c 0.718n =  kJ/kgK. It is estimated that 1 MJ of work is 

transferred to the fluid by means of an impellor.  Determine the increase in internal energy and 

temperature (assumed to be uniform) of the fluid.  Heat loss to the surroundings can be ignored. 

 

Solution:  The energy equation in this case reduces to s vW dU mc dT-d = = , which can be integrated to 

give 

( )
2 2

s 1 2 2 1

1 1

W W dU U m c dT mc T T mc T- n n n- d = - = = D = = - = Dò ò ò . 

since specific heat is a constant in the this case.  It follows that 
6

1 2

v

W 1 10
T 139K

mc 10 718

-- ´
D = = =

´
. 

and ( )6

1 2U W 1 10 1MJ-D = - = - - ´ =  
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Constant pressure processes and pc  

 

Heating processes in a constant pressure system 

Consider having a freely moving piston constrained by a weight, located in a cylinder and enclosing a 

thermodynamic system. 

 

As the system expands and contracts, the piston will move up and down, 

thereby maintaining constant pressure in the system. 

The energy equation for this case is 

Dq w dud -d =  

where in this case there exists a non-zero displacement work term 

Dw pdd = n .  The energy equation reduces to q du pdd = + n .  But since p 

is constant ( )q du pd d u p dhd = + n = + n = , where h u p= + n . 

The quantity h u p= + n is called the specific enthalpy of the system.  The 

actual enthalpy for the system is 

( )H mh m u p U pV= = + n = +  

The enthalpy is a very important quantity in thermodynamics, especially in open systems. It is a quantity 

that automatically captures the displacement work performed in pushing back the surroundings.  It is 

similar to internal energy in that it is a property (being a combination of properties U , p  and V ) and has 

the units of energy.  Its ability to automatically capture the displacement work done in pushing back the 

surroundings is particularly convenient and thus has been tabulated for many materials (see steam tables 

for example). 

Similar to the case for constant volume processes, the amount of heat transferred to our constant pressure 

system can be associated to temperature rise via a specific heat capacitance, i.e. pq dh c dTd = = , where

p

p p

q h
c

T T

¶ ¶æ ö æ ö= =ç ÷ ç ÷¶ ¶è ø è ø
.  Integrating the energy equation gives 

( )
2

1 2 2 1 p p 2 1

1

q h h c dT c T T- = - = = -ò  

where the last term is obtained with the assumption that 
pc  is constant (generally it is a function of T ). 

 

Work processes in a constant pressure system 

In this case, we have both a shaft work and a displacement work 

term appearing in the first law equation. The system is adiabatic, 

so 

( )
( )

d s

s

w w du

w d u pv dh

- d + d =

-d = + =
 

§ If shaft work is done on the system, 

( )
s

s

w 0

w dh 0

d <

-d = >
 

§ If shaft work is done by the system 

( )
s

s

w 0

w dh 0

d >

-d = <
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Example Question: A flexible walled vessel contains a mass of 10kg of a particular fluid is heated at 

constant pressure. The fluid has a constant specific heat capacity of pc 0.8=  kJ/kgK. If 1 MJ of heat is 

transferred to of the fluid, calculate the change in temperature of the fluid 

 

Solution:  In this case q dhd = .  Since p

p

h
c

T

¶æ ö= ç ÷¶è ø
 the energy equation pq dh c dTd = =  can be 

integrated to give 

( )
2 2

1 2 p p 2 1 p

1 1

Q Q m c dT mc T T mc T-d = = = - = Dò ò . 

since specific heat is a constant in the this case.  It follows that 
6

1 2

p

Q 1 10
T 125K

mc 10 800

- ´
D = = =

´
. 

Observe that T 0D > , i.e. 2 1T T> , which is expected since the vessel is heated by the heat transfer. 

  

U
ni

ve
rs

ity
 o

f M
an

ch
es

te
r 

- 
D

r 
A

m
ir 

K
es

hm
iri



CHAPTER 3: THE FIRST LAW AND ENERGY TRANSFER 

 

MODERN THERMODYNAMICS  F i r s t  L a w  | 3.13 

Tutorial Questions 
 
General 

1. A rigid tank contains a hot fluid that is cooled while being stirred by a paddle wheel. Initially, the 

internal energy of the fluid is 800kJ. During the cooling process, the fluid loses 500kJ of heat, and the 

paddle wheel does 100kJ of work on the fluid. Determine the final internal energy of the fluid. 

Neglect the energy stored in the paddle wheel. [U2=400kJ] 

 

2. A 50kg iron block at 80
o
C is dropped into an insulated tank that contains 0.5m

3
 of liquid water at 

25
o
C. Determine the temperature of the system when thermal equilibrium is reached. Take the specific 

heat of iron to be kgKkJCiron /45.0=  and for water kgKkJ /18.4 . Assume that water has a 

density of 
3/1000 mkg . [ CT o6.252 = ] 

 

3. We all remember being slapped when younger (or perhaps more recently, while entertaining a few 

close friends). The area being slapped always feels warmer after the blow has been struck. Imagine an 

angry person slaps you in the face. The slapping causes the temperature of the affected area of your 

face to increase by 1.8
o
C. Assume that the mass of the slapping hand is kg2.1 , and that about kg15.0  

of the tissue on your face and the hand is affected by the incident. Further assume that the temperature 

of the slapping hand is unchanged during the process. Estimate the velocity of the hand just before 

impact. Take the specific heat of the tissue to be kgKkJ /8.3 . ]/4.41[ sm  

 

Using Pure Substances (covered in Chapter 4) 

4. A closed tank contains 0.287kg of water and 0.713kg of steam at 7 bar. The tank is heated until is 

contains only saturated steam. Determine the final pressure and the heat supplied. [10bar, 550kJ] 

 

5. A cylinder contains 1kg of water at Co5  and 6 bar. It is heated at constant pressure until the volume 

becomes 
3514.0 m . Determine the final conditions and the heat supply. [superheated, 400

o
C, 3249kJ] 

 

6. A tank of volume 
3285.0 m  contains saturated ammonia vapour at Co48 . Calculate the heat transfer 

when the temperature is decreased to Co4 . [-3623kJ] 

 

7. A rigid tank is divided into two equal parts by a partition. Initially, one side of the tank contains 5kg 

of water at 200kPa and Co25 , and the other side is evacuated. The partition is then removed, and the 

water expands into the entire tank. The water is allowed to exchange heat with its surroundings until 

the temperature in the tank returns to the initial value of Co25 . Determine (a) the volume of the tank, 

(b) the final pressure and (c) the heat transfer for the process. [0.01m
3
, 3.16kPa, 0.265kJ] 

 

8. The expansion of steam in a cylinder follow the law .1.1 constpV =  At the start of the process, the 

pressure is 2.5 bar and the dryness is 0.9. The expansion ends when the volume is four times the initial 

volume. Calculate the heat transfer per kg during the process. [52.3kJ/kg] 

 

9. Steam expands in a cylinder following the law .constpV n =  At the start of the process, the pressure 

is 6 bar and the temperature is Co200  and at the end, the pressure is 0.7 bar and the quality is 1.0. 

Determine the heat transfer per kg. [ ]kgkJqn /6.206,13.1 ==  
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CHAPTER 4 

 
WORKING FLUIDS: PURE SUBSTANCES (VAPOURS) 

 

 

 

 

THE CHAPTER COVERS: 

 

 

PURE SUBSTANCES         Page 4.2 

PHASE CHANGE         Page 4.2 

EQUILIBRIUM SURFACE        Page 4.2 

READING STEAM TABLES        Page 4.3 

DRYNESS FRACTION (QUALITY)       Page 4.6 

THERMODYNAMIC PROPERTIES FOR A WET VAPOUR    Page 4.9 

READING EXERCISE: UNDERSTANDING PHASE CHANGE   Page 4.11 

TUTORIAL QUESTIONS        Page 4.19 

 

 

 

 

 

 

Part of these Notes form a compulsory reading Exercise: 

Read: Notes Chapter 4 “Working Fluids: Pure Substances (Vapours)” last nine pages. 

 

 

Read: Thermodynamics (An Engineering Approach by Cengel & Boles – 8
th
 Ed.) - Chapter 2 “Properties 

of Pure Substances” pages 111-141. 
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Introduction 

 

Up to this point in the course attention has been directed towards general principles, i.e. Work, Heat and 

the First Law.  However, in order to take on practical problems (analyse heat exchangers, boilers, engines 

etc.) and perform calculations some understanding of the behaviour and properties of fluids as temperature 

and pressure varies is required.  This section focuses on a particular type of working fluid referred to as a 

vapour. A vapour is an example of a pure substance, and includes fluids such as steam, ammonia and 

refrigerant-12 (R-12).   

The three phases of H2O, which are familiar to us all, are: solid (ice), liquid (water) and vapour (steam).  

Combinations of these phases can coexist at particular temperatures and pressures and bearing in mind the 

two-property rule this behaviour can be represented pictorially as an equilibrium surface on a p T-n-  

state diagram.  Note that an equilibrium surface represents the behaviour of a pure substance at 

equilibrium which practically means changes that are performed relatively slowly. 

The p – v – T Surface 

 

To gain a better understanding of the subject and to gain familiarity with the terminology used the student 

is directed to the self-learning section on page 11 of these notes.  This is a compulsory reading exercise; 

the material is examinable. 

 

The focus of the remaining notes is on the practicalities of reading steam tables, which require students to 

have access to: 

Thermodynamic and transport properties of fluids (SI units 5
th

 edition) 

By G.F.C. Rogers and Y. R. Mayhew 

(Blackwell publishers)  
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· These are the preferred steam tables for this course.  

· Over the next few pages, we will discuss how to read them 

 

Reading Steam Tables 

One of the difficulties with dealing with vapours is that their states are not usually amenable to simple 

analytic expression (such as the gas laws).  Therefore dealing with vapours for engineering calculations, 

requires the use of steam tables. 

Steam tables are a calculation tool.  In the case of steam tables, the p T-n-  surface of a pure substance 

such as water, ammonia (NH3) or dichlorodifluromethane (R-12) is tabulated in terms of temperature and 

pressure. 

 

Recall that in the introductory lectures, the two property rule was mentioned.  For any homogeneous 

thermodynamic system, two properties are sufficient to define entirely the thermodynamic state of that 

system.  In steam tables, temperature and pressure are used as the reference properties because these are 

the easiest to use experimentally and practically. 

 

Where to find what for various pure substances in the steam tables (left sketch OH2 , right sketch for 

other pure substances) 

 

Reading properties for saturated water and steam (pages 2-5) 

Along the top of page 2 you will see 

[ ] [ ] [ ] [ ] kJ/kgKkJ/kg/kgmbarC 3o

gfgfgfgfgs ssshhhvPT
 

 

Along the top of pages 3-5, you will see 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]kJ/KgKkJ/kgkJ/kgkJ/kg/kgmCbar 3o

gfgfgfgfgfgs ssshhhuuvTp
 

 

 

 

 

U
ni

ve
rs

ity
 o

f M
an

ch
es

te
r 

- 
D

r 
A

m
ir 

K
es

hm
iri



CHAPTER 4: PURE SUBSTANCES (VAPOURS) 

 

MODERN THERMODYNAMICS                     P u r e  S u b s t a n c e  ( V a p o u r )  | 4.4 

Focusing on the liquid, wet vapour and vapour regions and superimposing isobars on the t -n  diagram 

and isotherms on the p-n  gives the following plots. 

 

The dotted line to the left of the critical point is the saturated fluid line – any point on this line has the 

suffix f.  The dotted line to the right of the critical point is the saturated vapour line – any point on this 

line has the suffix g.  Comparing the entries on pages (3-5) of the steam tables to the t-n sketch gives 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example Questions: (saturation temperature and pressure) 

1. Find the saturation temperature (boiling temperature) for water at a pressure of 6 bar. 

2. At what pressure will water at 65°C begin to vaporise? 

3. What is the saturation temperature of R-12 at 1.004 bar? 
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Solutions: 

1. Turn to page 4. Next to the value p 6bar=  is the value 
0

st 158.8 C= .  The saturation 

temperature increases with pressure.  Expected because it is more difficult for water molecules to 

escape the liquid with higher pressures. 

2. Turn to page 2. Next to the value 
0t 65 C=  is the value sp 0.2501bar= .  The saturation 

pressure decreases with decrease in temperature.  Expected because at because it is more difficult 

for water molecules to escape the liquid for lower temperatures (less energy to do so). 

3. Turn to page 14. Next to the value sp 1.004bar=  is the value 
0t 30 C= - .  A material with a 

saturation temperature lower than 
00 C  at atmospheric pressure is evidently desirable for a 

refrigerant. 

 

Example Questions: (Specific Volumes)  

4. Find the specific volume of saturated water (nf) and saturated steam (ng) at a pressure of  

1.01325 bar. 

5. Find the specific volumes of ammonia (NH3) in the saturated liquid and vapour states at 28°C – 

what is the saturation pressure? 

 

Solutions: 

4. Turn to page 2. Next to the value sp 1.01325bar=  is the value 
3

g 1.673m / kgn = .  Next turn to 

page 10. Next to the value sp 1.01325bar=  is the value 
3

f 0.001044m / kgn = .   

5. Turn to page 13. Near to the value 
0t 28 C=  is the value 

3

g 0.1173m / kgn =  along with the 

saturation pressure sp 10.99bar= .  Note that fn  is not given on this page but you are directed to 

page 23 at the top of the table. At page 23 at 300K is the density 
3

f 600kg / mr =  and it 

follows 
1 1 3 3

f f 600 m / kg 0.0017m / kg- -n = r = = .  Note the approximate calculation of fn  

here since 
0t 28 C 301K= = .  Greater accuracy can be achieved with interpolation if necessary. 

 

Interpolation 

The steam tables do not contain entries for every 

possible state point on the p T-n-  surface.  

Therefore, it is often necessary to interpolate 

between values given in the tables.  The 

interpolation is linear as this is accurate enough 

for engineering calculations. 

 

To recap linear interpolation; suppose we want 

the value of a function ( )y f x=  at a given 

point.  All we know are the values of the 

function at two other adjacent points, between 

which the desired point lies:  
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Fitting a straight line between 1 1y f (x )=  and 
2 2y f (x )=  gives by means of similar triangles: 

 

 

a 1 2 1

a 1 2 1

y y y y

x x x x

- -
=

- -
 or a 1 a 1

2 1 2 1

y y x x

y y x x

- -
=

- -
 or 

( )12

12

1
1 yy

xx

xx
yy a

a -÷÷
ø

ö
çç
è

æ

-
-

+=  

This formula is linear, so the procedure is 

referred to as linear interpolation. 

 

Example Question: 

Find the saturation temperature of water at a pressure p 11.5bar= . 

 

Solution: 

Turn to page 4. Next to the value p 11bar=  is the value 
0

st 184.1 C= .  Moreover, next to the value 

p 12bar=  is the value 
0

st 188.0 C= .  The answer is simply 
0184.1 188

186.05 C
2

+
=  because 

11 12
11.5bar

2

+
= but let us use the linear interpolation formula based on similar triangles, i.e. 

0s s
s

t 184.1 t 184.1 11.5 11 0.5
t 184.1 3.9 0.5 186.05 C

188 184.1 3.9 12 11 1

- - -
= = = Þ = + ´ =

- -
. 

 

Dryness Fraction 

Consider a vessel at a given pressure and saturation temperature as depicted in the diagram. 

 

An important question of concern is; 

 

How much of the water has turned to vapour? 

 

or to put it another way; 

 

How dry is the wet vapour? 

 

It is important to appreciate that we are concerned here with a 

system in equilibrium, i.e. the steam and water have the same 

temperature and pressure. 
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This question cannot be answered directly just by reading figures from the steam tables – some additional 

calculations are required. 

Recall that two independent quantities are necessary and sufficient to determine the thermodynamic state 

of a simple system.  However, the complete thermodynamic state of the system includes how much of the 

water has vaporised.  This cannot be determined by knowledge of temperature at pressure alone because 

during evaporation, pressure and temperature are NOT independent.  Thus, if one is fixed, then so is the 

other, which is evident on examination of the steam tables and the examples above.  To cater for this 

difficulty a new independent parameter to describe the state of the vaporisation process is introduced, 

which is denoted the dryness fraction.   

 

The dryness fraction (or quality) is denoted by x  and is defined to be: 

g

f g

m Mass of vapour in the system
x

m m Total mass in system
= =

+
 

x 0® Þ   fluid is entirely liquid just starting to boil. 

x l® Þ   fluid is dry saturated vapour just about to enter superheat region. 

The dryness fraction is only defined in the wet vapour region and by definition 0 x 1£ £ .  It has no 

meaning to ask for the value of x  either in a liquid or a superheated vapour. 

Dryness fraction provides the needed measure of how far along the vaporisation process we are in a given 

problem. From this point on, we use a suffix x to denote quantities at a given/desired dryness fraction x 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider a closed system of volume V containing H20 in the form of a wet vapour.  The mass of the wet 

vapour is f gm m m= + .  The volume V, internal energy U, enthalpy H, entropy S can be expressed by 

the formulae: 
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( ) ( )gf
x f f g g x f g f g f g f

mm
V m m m 1 x x x

m m
= n = n + n Þn = n + n = - n + n = n + n -n  

( ) ( )gf
x f f g g x f g f g f g f

mm
U mu m u m u u u u 1 x u xu u x u u

m m
= = + Þ = + = - + = + -  

( ) ( )gf
x f f g g x f g f g f g f f fg

mm
H mh m h m h h h h 1 x h xh h x h h h h

m m
= = + Þ = + = - + = + - = + n  

( ) ( )gf
x f f g g x f g f g f g f f fg

mm
S ms m s m s s s s 1 x s xs s x s s s xs

m m
= = + Þ = + = - + = + - = +  

 

Each of these equations offers a formula for determining the dryness fraction x , i.e. 

 

 x f

g f

x
n -n

=
n -n

 or x f

g f

u u
x

u u

-
=

-
 or x f

fg

h h
x

h

-
=  or x f

fg

s s
x

s

-
=  

 

Example Question:  Find the specific volume of wet steam with a quality of 67% at a pressure of 6 bar. 

 

Solution: From the question x 0.67= .  The vapour is evidently wet.  Examination of page 4 at reveals at 

p 6bar=  the value 
0

st 158.8 C=  and 
3

g 0.3156m / kgn = .  The specific volume xn  is provided by 

the formula ( )x f g fxn = n + n -n  but to apply this formula fn  is needed.  There are three 

approaches one can adopt to obtain fn . 

1. Assume   

3 3
1

f

1 m m
1000 0.001

kg kg

-n = = =
r

 for water. 

2. Find fn  from page 10 of steam tables, which 

3

f

m
0.001102

kg
n = . 

3. Appreciate that gf nn << , so simply ignore it. 

 

Using each of these three methods gives slightly different answers: 

1. ( ) /kgm2118.0103156.067.010 333 =-+= --
xn  

2. ( ) ./kgm2118.0101102.03156.067.0101102.0 322 =´-+´= --
xn  

3. ( ) ./kgm2115.03156.067.0 3==xn   

 

Example Question:  Find the state (temperature and dryness fraction) of steam at 12 bar, with a specific 

volume of 0.1m
3
/kg. 

Solution: From tables on p.4, at 12 bar, 
kg

m
1632.0

3

=gn  and 
kg

m

1000

1 3

»fn . 
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The specific volume given is 
kg

m
1.0

3

=xn  and it is evident that f x g 0 x 1n £ n £ n Û £ £ , which infers 

that the steam is wet.  The saturation temperature st 188 C= 8 C  and the dryness fraction 

      61.0
1000/11632.0

1000/11.0
=

-

-
=x . 

Finding other thermodynamic properties for a wet vapour 

 

Example Question: Find the internal energy of steam at 40 bar, with a dryness fraction of 0.6. 

Solution:  Use the formula ( )x f g fu u x u u= + -  where the u ’s are taken from the 40 bar row on page 4.  

Thus , ( )xu 1082 0.6 2602 1082 1994kJ/kg= + - = . 

 

Example Question: Steam is at a pressure 16 bar and has an internal energy of  

(i) 2432 kJ/kg;  

(ii) 2700 kJ/kg.   

For both cases, find out if the vapour is wet or superheated and where appropriate, find the dryness 

fraction. 

Solution: On page 4 at p 16bar=  fu 857kJ / kg=  and gu 2596kJ / kg=  hence case (ii) is a 

superheated vapour.  The dryness fraction in case (i) is simply x f

g f

u u 2432 857
x 0.906

u u 2596 857

- -
= = =

- -
. 

Bilinear Interpolation 

When dealing with superheated vapours it is observed that the entries in the tables are quite widely 

spaced.  Often it is necessary to use bilinear interpolation, i.e. interpolation on two variables ( p  & t ).   

 

Example Question: Find the internal energy of steam at a pressure of 16 bar and a temperature of 380°C 

The following readings from page 7 are pertinent.  

At p = 15bar, u350 = 2868 kJ/kg and u400 = 2952 kJ/kg. It follows that.

380 350 380
380

400 350

u u u 2868 380 350 3 3
u 2868 84 2918.4kJ / kg

u u 2952 2868 400 350 5 5

- - -
= = = Þ = + ´ =

- - -
 

 

At p = 20bar, u350 = 2861 kJ/kg and u400 = 2946 kJ/kg.  Similarly 

380 350 380
380

400 350

u u u 2861 380 350 3 3
u 2861 85 2912kJ / kg

u u 2946 2861 400 350 5 5

- - -
= = = Þ = + ´ =

- - -
 

 

It follows therefore at p 16bar= that 

380
380

u 2918.4 16 15 1 1 32
u 2918.4 2917.1kJ / kg

2912 2918.4 20 15 5 5 5

- -
= = Þ = - ´ =

- -
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Reading Other Properties from the Steam Tables 

 

Example Question: Find the enthalpy and entropy for R-12 at a pressure of 0.2998 bar, and a quality of 

60%. 

 

Solution: From page 14: ( ) ( )( )x f g fh h x h h 13.14 0.6 162.62 13.14 92.32 kJ/kg= + - = - + - - =  and 

( ) ( )x f g fs s x s s 0.0582 0.6 0.7475 0.0582 0.4252 kJ/kgK= + - = - + + = . 

 

 

Example Question: Find the enthalpy of steam at a pressure of 8 bar.  With an entropy of 6.5 kJ/kgK.  Is 

the steam wet or superheated?  Give reasons for your answer. 

 

Solution: Look at steam at 8 bar on p.4, we find 

     
f

g

s 2.046 kJ/kgK

s 6.663 kJ/kgK

=

=
 

The entropy given in the question is xs 6.5kJ/kgK=  and observe that f x gs s s£ £ .  Therefore, the steam 

is wet and  10 ££ x .  It follows that x f x f

g f fg

s s s s 6.5 2.046
x 0.96

s s s 4.617

- - -
= = = =

-
.   

Moreover, x f fgh h x h 721 0.96(2048) 2687.1kJ/kg= + = + =  
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READING EXERCISE: UNDERSTANDING PHASE CHANGE 

 

Introduction 

This section focuses on a particular type of working fluid referred to as a vapour. A vapour is an example 

of a pure substance, and includes fluids such as steam and refrigerant-12. Another class of pure substances 

used in engineering applications (examined later in the course) are ideal gases.  Ideal gases are treated 

differently to fluids.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pure substances  

A pure substance is one which is: 

a. homogeneous in composition:  this means it has the same ratios of atoms throughout the 

system, i.e. the composition is the same 

b. homogeneous in chemical aggregation:  this means it has the same atomic structure, 

which means that the molecules must be built up in the same way 

c. invariable in chemical aggregation:  this means that no chemical changes take place 

with time, i.e. the compound is stable. 

 

Example 1:  mixture of all phases of H2O 

 

This is a pure substance because the system contains only water with the molecules bound together in the 

same way throughout. 

 

Example 2:  air 

 

A mixture of liquid and gaseous air is not a pure substance because the molecules are not all the same, and 

also the equilibrium compositions in the liquid and gas phases will differ due to the difference in boiling 

points of the constituents, i.e. oxygen and nitrogen 

 

 

Phases of a pure substance 

 

The major phases of pure substances are solid, liquid and vapour.  Substances may exist in two or more 

phases in equilibrium.  This course will concentrate mostly on water (H2O), for which the following 

phases can co-exist in equilibrium: 
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i. ice (solid) + water (liquid) 

ii. ice (solid) + steam (vapour) 

iii. water (liquid) + steam (vapour)  

iv. ice (solid) + water (liquid) + steam (vapour) 

 

The transitions between these phases have the following names: 

 

i. transition between water and ice - fusion 

ii. transition between ice and vapour phase - sublimation 

iii transition between water and vapour phase – vaporisation 

 

Phases and transformations are discussed later in the course. 

 

Experiment 

 

Take a kettle, and fill it with water from the tap, plug it in. 

At time = 0, the water temperature = 20°C. We switch the kettle on. 

What happens? 

· Water starts to heat up.   

 

How much will the water ‘heat up’ (how far will its 

temperature continue to change)? 

· Until it boils. 

 

What happens during boiling? 

· Some of the water changes phase from liquid to vapour. 

 

 

 

Why does the temperature in the kettle remain constant during 

boiling? 

 

· Because the energy transferred to the kettle goes toward 

changing the phase of the fluid. 

 

· The temperature at which water boils is dependent upon 

atmospheric pressure.  The higher the pressure, the higher the 

temperature at which boiling takes place. 

 

· This is one of the reasons you cannot make a decent cup of 

tea on the top of Everest (The boiling point of water there is 

about 70°C). 

 

The temperature and pressure at which water boils are referred to as saturation temperature and saturation 

pressure.  The ‘saturation’ refers to the fact that the fluid is saturated with energy – any further transfer of 

energy brings about a change of phase. 

 

Suppose we perform a new experiment in which we plot temperature t (in 
o
C) against specific volume v 

for a heating process similar to that which takes place in a kettle.  The difference between this experiment 

and the one above is that none of the vapour is allowed to escape through a spout.  Also, we will allow the 

volume of our new vessel to change, in order that the pressure within the system be maintained constant. 
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The water in the system is initially at C20o
, and the specific volume 

is 1v , where  

kg

m

1000

11 3

1

1 ÷
ø

ö
ç
è

æ»=
r

v  

 

 

 

 

It is useful to plot the process on a t-v diagram. 

  

 

 

 

 

 

 

 

 

 

 

The system initially occupies the state point 

( )11 , tv . Heat is transferred to the system. As the 

water warms, it expands slightly. 

Chose 2n  to be that point just where the water is 

boiling.  At this point 2 st t=  and 2 fv v= . 

In words, this means ‘the water is at the saturated 

(boiling) temperature for the given pressure, its 

specific volume is that of a saturated fluid (i.e. a 

fluid just beginning to vapourise)’. 

What happens if we continue to transfer heat 

to the system?   

· Some of the water vapourises, it 

becomes steam. 

· Steam is much less dense than water.  

To maintain the same pressure the system must expand – the piston moves up. 

· The water and the steam co-exist in equilibrium.  This means that if the heat supply is cut off and 

the system is insulated, the proportions of steam and water remain the same. 
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What happens at state point (5)? 

At State point (5), all of the water has been turned to vapour.  At this point, the vapour is said to be dry 

saturated – it is saturated in as much as all of the energy which could be accommodated by phase change 

has been accommodated by phase change.  The specific volume at state point (5) is denoted 

gnn º5  

where the ‘g’ stands for “dry saturated vapour” (!).  If heat is further added at state point (5), the vapour 

becomes superheated, and both the temperature and the specific volume increase.  So, when heating water 

which is initially @ 20°C (say) to a superheated vapour, we recognise a number of important points: 

 

 

 

 

 

 

 

 

 

 

 

It is important to emphasise that this curve is for constant pressure heating.  The amount of energy 

required to go from saturated liquid to saturated vapour is called latent heat of vapourisation.   

Suppose we construct a family of these curves, each one corresponding to a different ambient pressure. 

What we would observe is that as the pressure increases, the onset of boiling is delayed, i.e. the saturation 

temperature increases. The specific volume of the fluid at the point at which boiling begins also increases. 

We note also that with an increase in pressure, the region in which vaporisation takes place shrinks, i.e. 

( )
fgfg vvv -=  decreases with increasing pressure; 
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The dotted line represents the locus of two sets of points, separated by the critical point. To the left of the 

critical point is the saturated liquid line.  This is the locus of all the different sf 'n  which occur at the 

saturation temperatures for a given set of pressures. To the right of the critical point is the saturated 

vapour line, which represents the set of sg 'n associated with a given set of saturation temperatures and 

pressures. 

At the critical point, fn and gn  are the same, and the distinction between liquid and vapour is lost.  

Above the critical point on the t- n  diagrams, the state of the fluid (liquid, wet vapour, superheated vapour 

etc. cannot be identified. 

Suppose now we examine freezing (instead of boiling) on the t-n diagram. We again start with water at 

20°C, l bar, but this time allow it to cool: 

 

 

 

 

 

 

 

 

 

 

 

In the case of water, the temperature and specific volume decrease up until freezing occurs.  Upon 

freezing (actually, below 4
o
C) water expands– most other liquids contract. 

 

 

 

 

 

 

 

 

 

The fact that water expands on freezing is the reason why domestic plumbing suffers from ruptured 

pipework in winter. 

Just as we did for boiling points, we can construct the locus of the set of freezing points for different 

ambient pressures; 

Here we have shown the vaporisation lines (AB) and the freezing lines (CD).   
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In summary, we can construct the entire T-n diagram for water, ranging from the frozen state to 

superheated steam. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the sketch are all the features we have so far discussed, plus a new one; the triple point.  The triple 

point for a pure substance is that particular temperature and pressure for which the substance can exist 

simultaneously in 3 states; solid, liquid and gas.  For water at the triple point, we would find blocks of ice 

floating in liquid water and surrounded by vapour. 

Finally, we have marked in the previous diagram the phase transformation process that can occur: 

1. Vaporisation – the liquid phase changes to a vapour (boiling). 

2. Fusion – the solid phase changes to liquid (thawing). 

3. Sublimation – the solid phase changes to vapour (weird). 
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We can see sublimation in action in 

winter. Snow which has lain on the 

ground for a long period of time can 

appear to vanish without thawing 

and soaking the ground. This is 

because the snow sublimates due to 

the small amount of water in the 

atmosphere. Sublimation occurs in 

low humidity climates. The opposite 

phenomenon also occurs in winter 

and is called a hoar frost. 

For a substance other than water, the 

t-n diagram appears 

 

 

 

 

Other Ways of Examining Pure Substances 

 

As well as plotting the behaviour of a fluid as its temperature increases and its pressure remains the same, 

we can also plot fluid behaviour as pressure changes and temperature remains the same. 

 

We do this by imagining we have a cup filled with water at 90°C, initially at sea level.  The cup is well 

insulated.  Next, we start to climb Mount Everest. As we climb the pressure drops, and the specific 

volume increases: 

 

Now, recall that at the top of Everest, water boils at 

70°C because the atmospheric pressure is very low 

(~0.3 bar).  Our cup contains water at 90ºC, so 

somewhere on the ascent of Everest, the pressure 

drops to the point where the boiling temperature 

equals that of the cup of water. Even though we have 

done nothing to add energy to the cup, the water in 

the cup starts to boil. It boils at 90ºC. 

 

 

 

 

 

We stay where we are on the mountain, while the water boils away.  Analogous to the saturation 

temperature ts which we discussed in conjunction with the t-n diagram, we denote by ps the saturation 

pressure.  This is the pressure at which a pure substance of a given temperature will start to boil.  We 

imagine that our cup is sealed ( so that no fluid escapes), and that it can change volume freely so that the 

pressure inside is the same as the ambient pressure. 
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Once the cup has boiled dry and contains only 

vapour (steam), we resume our climb.  The 

pressure drops ever lower and, in effect, our 

vapour at 90°C becomes more and more 

superheated for that ambient pressure. 

 

 

 

 

 

 

 

 

Again, we can construct the locus of points for a given family of temperatures, and we obtain  

 

 

As in the t-n diagram, we have a critical 

point, separating the saturated liquid and 

vapour lines.  We can also identify liquid, 

wet vapour and superheated vapour regions. 
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Tutorial Questions 
 

1. A vessel, volume l0m3, contains 40kg of liquid water and water vapour in equilibrium at 7.0 bar.  

Calculate 

a. the dryness fraction, [0.9161] 

b. volume and mass of vapour, [9.995 m
3
, 36.6 kg] 

c. volume and mass of liquid. [4.6×10
-3

 m
3
, 3.36 kg]  

 

2. A closed vessel contains ammonia vapour, dryness 0.7 at 16°C.  The ammonia is heated until it has 

dryness 0.9.  What is the final temperature and pressure? [24°C, 9.7 bar]  

 

3. In the following table for steam each column is a separate example. Complete each column omitting 

any properties which do not apply. 

 

Parameter/Question 1 2 3 4 5 6 7 8 

Mass kg 3 4  10    1 

Total volume m3   20 1 220 10 2  

Specific volume 

m3/kg 

     70    

Pressure bar 6.0 7.0 15.0 15.0   8.0 18.0 

Temperature °C   350   70   

Degree of superheat  85       

Quality 0.8    1.0 1.0 0.8 .01 

 

4. Determine the quality of the following substances in the given states:  

a. Ammonia   40°C  0.07 m3/kg               [x = 0.837]  

b. Freon 12   6.52 bar 0.02 m3/kg               [x = 0.736]  

c. Water   40°C  1 m3/kg                    [x = 0.051]  

d. Water   180 bar  0.007 m3/kg             [x = 0.909]  

 

5. The radiator of a steam heating system has a volume of 0.2m3 and contains saturated vapour at 1.5 

bar.  The valves are closed and by cooling the pressure drops to 1.4 bar.  Calculate 

a. the total mass in the radiator, [0.173kg]  

b. the volume and mass of water in the final state, [1×10
-5

 m
3
, 0.01 kg] 

c. the volume and mass of steam in the final state. [0.19999 m
3
, 0.1623 kg]  

 

6. Steam at the critical state is contained in a rigid vessel.  The vessel cools until the pressure is 27.5 bar.  

Calculate the final quality. [x = 0.0302]  

 

7. A rigid vessel contains water and steam at 1.0 bar.  Determine the proportion by volume of water and 

steam necessary to make it pass through the critical state when heated.  

       [vg = 2.12×10
-3

 m
3
/kg, vf = 1.04×10

-3
 m

3
/kg]  

 

 U
ni

ve
rs

ity
 o

f M
an

ch
es

te
r 

- 
D

r 
A

m
ir 

K
es

hm
iri



 

 

 

CHAPTER 5 

 
OPEN SYSTEMS AND ENERGY TRANSFER 

 

 

 

 

THE CHAPTER COVERS: 

 

 

UNSTEADY FLOW ENERGY EQUATION (USFEE)      Page 5.2 

STEADY FLOW ENERGY EQUATION (SFEE)      Page 5.3 

SIMPLIFIED FORMS OF THE ENERGY EQUATION      Page 5.3 

SPECIFIC FORMS OF THE ENERGY EQUATION      Page 5.5 

APPLYING THE STEADY FLOW ENERGY EQUATION     Page 5.6 

ADIABATIC MACHINES         Page 5.6 

Compressors           Page 5.6 

Pumps            Page 5.6 

Turbines           Page 5.7 

Throttling           Page 5.8 

Nozzles            Page 5.9 

HEAT EXCHANGERS          Page 5.12 

CONSERVATION ACROSS DEVICES       Page 5.13 

TUTORIAL QUESTIONS         Page 5.14 

 

 

 

 

Read: Thermodynamics (An Engineering Approach by Cengel & Boles – 8
th
 Ed.) - Chapter 5 “Mass and 

Energy Analysis” pages 212-242. 
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Introduction 

 

The thermodynamic analyses undertaken thus far have been based on closed systems, i.e. ones in which 

there is no mass flux across the system boundaries.  The following various mathematical forms of the 

energy equations have been considered: 

 

(i) Integrated form 

2 2

2 1 2 2 2 1 1 1 1 2 1 2

1 1
E E U mgz mv U mgz mv Q W

2 2
- -

ì ü ì ü- = + + - + + = -í ý í ý
î þ î þ

 

(ii) Differential form 

21
dE d U mgz mv Q W

2

æ ö= + + = d -dç ÷
è ø

 

(iii) Rate form 

( )21
2

d
u v gz dm qdA dA

dt W G G

+ + = - ×ò ò ò vòqdAqdAqdA t  

or 

2dE d 1
U mgz mv Q W

dt dt 2

æ ö= + + = -ç ÷
è ø

Q WQQ WW  

 

which all can be divided through by mass m (since m is constant for a closed system) to reveal similar 

looking equations involving specific quantities. 

 

Transport equations for open systems 

 

The equations above do not account for changes in energy due to mass entering or leaving the control 

volume W  through the boundary G .  However, this is readily accounted by considering an element area 

dA  at control surface G .  The elemental volume of material exiting at dA  is dAdt×v n  from which it 

can be deduced that the elemental mass exiting is dAdtr ×v n  and it immediately follows that the 

elemental energy exiting is e dAdtr ×v n .   

 

 

 

 

 

 

 

 

 

 

The rate form of the energy equation for an open system follows at is 

 

cvdE
edm Q W

dt G

+ = -ò WWm Q Wm Qm QQ WQQ WW  

 

which is known as the unsteady flow energy equation (USFEE), where 
21

2
e u v gz= + +  and for the 

case of a stationary control volume dm dA= r ×v nm dr dd . 

Many situations arise where energy within the control volume W  is unchanging, i.e. cvE 0=E 0  and the 

resulting equation is 

n

 

Control Volume 

W  

G  Control Surface 
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edm Q W
G

= -ò WWm Q WQQQ WQQ WW  

 

which is known as the steady flow energy equation (SFEE). 

 

Many engineering applications do have mass flows across their boundaries (i.e. open systems).  Examples 

of this type of system include: 

· Boilers 

· Aircraft engines 

· I.C. engines 

· Heat exchangers. 

 

Simplified forms of the flow energy equations  

 

The analysis above revealed that the elemental mass exiting a control volume W  through the boundary G  

is dmdt dAdt=r ×v nmdt r , where dm dA= r ×v nm dr dd  and the dot signifies rate. A transport equation for mass 

is 

 

d
dm dm 0

dt W G

+ =ò ò m 0mm   or cvm dm 0+ =òdm 0dmcvmcv ò   or  cv e im m m 0+ - =cv e im m m 0cv e icv e im mm mcv e icv e icv e  

 

where for the last equation mass is assumed to enter at an inlet and exit at outlet denoted by a suffix ‘i’ for 

inlet and ‘e’ for exit. 

The exact same approach applies to the USFEE, i.e. cvE edm Q W+ = -ò WE edmedmdò Wm Q Wm Qm Q Wm QQQ WQ , which is simplifies to 

cv e e i iE m e m e Q W+ - = -WE mcv emmcv ecv ecv e WQ Wcv e e i icv e e i i Qcv e e i icv e e i im e m e Q Wm e m e Qm e m e Qcv e e i icv e e i i Q WQQ  

 

with exit and inlet identified. 

 

This simplifies even further for the SFEE to ( )e im e e Q W- = -Q WQQ WW( )m e e( )e ie iee )e ie i , since for steady flow e im m m= =e im m me ie imme ie i  

(since cvm 0=cvm 0cv ). 

 

Identifying shaft and displacement work rates at G  gives s D sW W W W p dm
G

= + = + nòW W W W p dmW W W pW W W ps D ss D ss D s ò mm , which on 

substitution into the USFEE yields  

 

 
h

cv sE e dm Q W+ = -ò WhE e dmhe dmhò WWcv scv sm Qcv scv sWQm Qm QQ WQQ , 

 

where 
h 2 21 1

2 2
e e p u p v gz h v gz= + n = + n+ + = + + , 

 

and where h is specific enthalpy.  On identifying exits and inlets the USFEE simplifies to 

h h

cv e e i i sE m e m e Q W+ - = - sssE mcv emmcv ecv ecv e sWsscv e e i icv e e i icv e e i icv e e i i

h h Qh hm e m e Qm e m e Qh hh h

cv e e i icv e e i ie i i Q WQQ  

 

Differential forms are obtained on multiplication by dt  to give 
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( )h

cv SE dt e d mdt Qdt W dt+ = - Þò t(hE dt e d m(h

cv Scv S Þdtcv Scv Se d m(h

cv Scv S(cv Scv Sòcv Scv St W dtt W dtt Wcv Scv Scv Scv S)cv Scv S))mdt Q)mdt Qmdt Q)cv Scv Scv S) QdtQdtcv Scv S ( )h

cv sdE e d m Q W+ d = d -dò  

Can you appreciate the reason for the use of the symbol d  in the expression m mdtd =mdt ? 

 

Example: 

Find the units of the displacement work term. 

   [ ] [ ]
3

2

kg N m Nm J
mp W

s m kg s s

é ùé ù é ù é ù é ùn = ´ ´ = = =ê úê ú ê ú ê ú ê úë û ë û ë û ë ûë û
]mp ] ékgkg] ggg

 

 

 

The meaning of the displacement work and unsteady terms in the USFEE 

In the previous derivation, the displacement work DWd  is taken over to the left hand side of the energy 

balance.  In order to appreciate the reason for this let us examine briefly the meaning of the pn  term 

appearing in the USFEE.   The term pn  arises from the displacement work, but displacement of what? 

 

 

 

 

 

 

 

 

 

 

 

 

The displacement refers to the working fluid, which (here) is displaced from outside the device to inside 

the device.  Imagine for a moment that the mass of fluid imd  is encased in a piston/cylinder arrangement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to get the elemental mass imd  into the system, the piston must overcome the resisting force 

produced by the pressure inside the system.  Remember, work can only be done against a resisting force 

and hence (if p = constant) 

D i iW mpd = d n  
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Now, in our example the piston is replaced by the upstream flow so 
DWd  is the work done by the fluid on 

the system in pushing an elemental mass 
imd  of the working fluid across the system boundary. 

 

As mentioned in previous notes enthalpy automatically captures the displacement work performed in 

pushing back the surroundings.   

 

The term pn  is referred to as displacement work, specific flow work or pressure work. 

 

Specific forms of the energy equations  

 

The simplified rate form of the USFEE is 

[ ]
2 2

e i
cv e e e i i i s

v v
E m h gz m h gz Q W W

2 2

ì ü ì ü
+ + + - + + = -í ý í ý

î þî þ
]W[i i si i sE m Q

ì üv ì üv
Qi i si i si i sm [Q W [i i si i sQi i si i scv e e e i i i scv ecv e i i scv e e e i i i se e i i i se e i i i se e ie e ie e i i i se e i i i se e i i i se e i i i si i si i si i si i si i si i si i se e ie e ie e ie e ie e ie e ie e ie e ie e ie e ie e im

ì üv ì ü
iv

i i si i sm í ý í ýh gz m h gzh he i
ì üì üv

hhhh ev ì üì ü
iv

hhhh iv
h gz m h gze i

e e i i i se e i i i se e i i i se e i i i s  

which for the steady state case reduces (since 
cvE 0=E 0  and e im m m= =e im m me ie imme ie ie i ) to 

[ ]
2 2

e i
e e i i s

v v
m h gz m h gz Q W W

2 2

ì ü ì ü
+ + - + + = -í ý í ý

î þî þ
Q Wi si sQQi si s ]W[i si s [W W[i si sm h z m h zi s

ì üv ì ü
iv

i si sí ý í ýh gz m h gzh z m h ze i
e e i i se e i i se e i i se e ie e i

ì üì üv
hhhh ev ì üì ü

iv
hhhh iv

gz m h gzgz m h gzgz m h gze i
e e i i se e i i se e ie e i i se e i i si se e i i se e i i se e i i se e ie e ie e ie e ie e ie e ie e ie e ie e ie e ie e ie e ie e ie e ie e ie e i  

which reduces further on dividing through by mm  to  
2 2

e Si
e e i i s

v Wv Q J
h gz h gz q w

2 2 m m kg

ì ü ì ü é ù
+ + - + + = - = -í ý í ý ê ú

ë ûî þî þ

Q We Se Se Se Se Se Se Se Se Se SWe Se S
i si s

m m
i si si si si s  

where in this equation, q  and sw  are taken to mean the heat and shaft work transfers which take place 

per kg of mass passing through the control volume. 

 

The steady flow energy equation (SFEE) can also be written in a differential form, in much the same way 

as it was for closed systems, i.e. 

sdh vdv gdz q w+ + = d -d  

 

Rather interestingly this equation in the absence of shaft work ( sw 0d = ) and assuming adiabatic 

( )q 0d =  along with isothermal incompressible flow ( du 0= , d 0r = ) gives  

 
2 2p v p v

dh vdv gdz d gz 0 gz const.
2 2

æ ö
+ + = + + = Þ + + =ç ÷r rè ø

 

 

which is Bernoulli’s equation (met in 1
st
 year fluids). 

Bernoulli’s equation arises here because thermodynamic quantities have essentially being removed 

leaving only mechanical energy terms which arise in the mechanical-energy form of the momentum 

equation (not considered further here). 
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Applying the steady flow energy equation 

 

Adiabatic machines 

Recall from earlier lectures that the term ‘adiabatic’ refers to a process in which there is no heat transfer. 

Examples of machines that are almost adiabatic (i.e. heat transfer is low relative to flow of energy), and 

that are common to engineering processes are compressors and turbines 

 

1) Compressors 

Compressors are found in jet engines, air receivers, good 

quality paint sprayers and fridges, as well as many other 

applications. As the name implies, a compressor is designed to 

compress gas i.e. to raise gas pressure. Schematically, a 

compressor is as shown in the diagram.  

 

Compressors do work on the fluid and hence 
SW 0<W 0S

. 

Applying the SFEE to the compressor, in terms of specific 

quantities gives 

( ) ( ) ( )2 2

2 1 2 1 2 1 s

1
h h v v g z z q w

2
- + - + - = -  

Common assumptions for a compressor are: 
21

2
v hD << D , g z hD << D  along with adiabatic q 0=  

assumption yields a simplified SFEE, i.e. 

 

1 2 sh h w- =  

 

In a situation where the compressor is compressing an ideal or perfect gas (to be defined later), then the 

relation ( )1 2 p 1 2h h c T T- = -  applies and the following is obtained: 

 

( )s p 1 2w c T T= -  

 

A compressed gas typically warms up (think of a bicycle pump, or the fuel/air mixture in a diesel engine), 

which infers that 2 1T T>  and since 
pc 0> , it follows that 

 

( )s p 1 2w c T T 0= - <  

 

which confirms our earlier statement that compressors are power consumers. 

Note that the step ( )1 2 p 1 2h h c T T- = -  can generally only be made for an ideal or perfect gas. When 

dealing with a vapour power turbine (i.e. one using steam or similar fluid), one must use steam tables to 

find the enthalpies at the inlet and exit of the system. 

 

2) Pumps 

A similar device to a compressor is a pump, which finds applications where liquid is required to be 

circulated.  The pump achieves this by using work to increase the pressure in the liquid.  The SFEE for a 

pump is identical to a compressor but 

( ) ( )2 1 2 1 2 2 1 1 2 1sw h h u u p v p v v p p- = - = - + - » -  

 

since 2 1u u»  (since little temperature change in liquid) and 1 2v v v= »  (liquids are close to 

incompressible). 
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Example Question: 
A refrigerator compressor is used to compress Freon-12 (R-12) at a mass flow rate of 5 kg/s, with a 

pressure change from 1.004 bar to 27.89 bar.  Calculate the adiabatic power required by the machine.  

Assume that the condition of the gas is dry saturated at inlet and outlet, and neglect changes in potential 

and kinetic energy. 

 

Solution: The power requirement is the rate of doing 

work, i.e. kJ/s, and hence it is 
sWW .  Thus the power is  

( )s 2 1W m h h- = -W ms 2 1s 2 1W mW mW m )s 2 1( hs 2 1s 2 1((m h(s 2 1s 2 1(m h(m h( , 

where 2h  and 1h  can be found from the tables for R-12.  

This gives  

( )s 2 1W m h h 5 (212.8 174.2) 193.0kW- = - = ´ - =W mW mW ms 2 1s 2 1s 2 1 ))s 2 1s 2 1( h )h )s 2 1s 2 1((m h(m h(s 2 1s 2 1(  

which means that 
sW 193kW.= -W 193k  

The significance of the negative sign is that work is 

done on the system in a compressor. 

 

 

3) Turbines 

Turbines are found in jet engines and ground based power producing plant. A turbine is designed to 

extract energy from the working fluid and convert it to shaft work. Schematically, we represent a turbine 

as  

Note how that a turbine is drawn the opposite way around to a 

compressor. 

 

Turbines are power producers, i.e. 
sW 0>W 0 . Applying the SFEE 

to a turbine, 

( ) ( ) ( )2 2

s 2 1 2 1 2 1

1
q w h h v v g z z

2
- = - + - + -  

Again assume: 
21

2
v hD << D , g z hD << D  along with adiabatic 

q 0=  assumption yields a simplified SFEE, i.e.  

s 1 2w h h= -  

Is the adiabatic assumption accurate? 

The turbine itself is very hot (it would burn you if you tried to touch the casing).  However, the heat 

transfer ‘leakage’ through the casing is very small compared to the energy flux through the turbine. Hence 

q 0=  is a good approximation to the real device.  

For the case of a gas turbine ( )s p 1 2w c T T= - . Now, an expanding gas cools as it flows across the 

turbine and hence ( )s p 1 2w c T T 0= - > , confirming the turbine as a power producer. As with 

compressors, if you are dealing with a vapour power turbine, steam tables must be used to find 1h  and 2h  

 

Example Question: 

A steam turbine is supplied with superheated steam at 100 bar, 600°C.  The exhaust pressure from the 

turbine is 6 bar and the temperature is 200°C.  Calculate the power output of the turbine if the mass flow 

rate is 100 kg/s, and the inlet and outlet velocities are equal. 

 

Solution: The enthalpy at states 1 and 2 can be evaluated from the superheat tables.  Turn to page 8 at (p1, 

T1)=(100bar, 600°C) 1h 3624kJ / kg= and on page 7 at (p2, T2)=(6bar, 200°C) 2h 2851kJ / kg= .
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Hence the power output of the turbine is ( )s 2 1W m h h- = -W ms 2 1s 2 1W mW mW m )s 2 1( hs 2 1s 2 1((m h(s 2 1s 2 1(m h(m h(  

which gives 

( ) [ ]s 2 1W m h h 100 (2851 3624) 77300kJ / s kW- = - = ´ - = -W mW mW ms 2 1s 2 1s 2 1 ))s 2 1s 2 1( h )h )s 2 1s 2 1((m h(m h(s 2 1s 2 1(
 

Thus 
sW 77300kW 77.3MW= =W 773007730077  

This work output is positive because work is done by the fluid in 

passing through the turbine. 

 

 

 

4) Throttling process 

Throttling processes occur commonly in engineering, when a fluid is passed from a high pressure to a 

lower one.  An example of a throttling process is the induction system of a petrol engine, when the power 

output (or speed) of the engine is reduced by fitting a valve in the inlet manifold.  Other examples are 

valves fitted in pipes to control the flow of fluid along the pipe; a stop-cock in a water main might act as a 

throttle when it is not fully open. Another common example is an orifice plate which, as the name 

suggests, is simply a plate with a carefully sized hole in it designed to regulate the flow rate to a pre-set 

amount. When the working fluid is a pure substance, the sharp pressure drop produced across a throttle 

can result in a sharp temperature drop. For this reason, throttles are often found in refrigeration 

applications. A typical throttling process is shown schematically in the figure below 

 

 

 

 

 

 

 

 

Schematic diagram of throttle valve 

 

The control volume of the throttle is defined by the control surfaces at 1 and 2, and the pipe-work of the 

system.  The flow through the throttle valve can be considered to be steady and hence, for each kg of mass 

flowing through the system, we have the equation  

( ) ( ) ( )2 2

s 2 1 2 1 2 1

1
q w h h v v g z z

2
- = - + - + -  

There is no shaft work done in the throttle, and hence sw 0= .  It can be assumed that the heat losses (or 

gains) to the fluid passing through the throttle are negligible compared to the energy contained in the fluid 

itself, giving q 0= .  Also, the change of potential energy of the flow passing through the throttle is small 

compared to the changes in the other properties, which allows us to simplify the steady flow energy 

equation to 

   

2 2

2 1
2 1 0

v v
h h h const.

2 2
+ = + = =  

The term 

2

0

v
h h

2
= +  is called the stagnation (or total) enthalpy of the fluid; it is the enthalpy achieved 

in bringing the fluid to rest adiabatically. 

 

In many cases the velocity of the fluid does not change significantly across the throttle, and the steady 

flow energy equation further simplifies to 
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2 1h h=  

The two property rule implies ( )h T,p  or equivalently ( )T h,p , which generally infers 

( ) ( )2 2 2 1 1 1T h ,p T h ,p¹  since 2 1h h=  and 2 1p p¹ . 

 

Hence: 

If the change in velocities across a throttle valve is not negligible, then the stagnation enthalpy across the 

valve is constant. 

 

If the change in flow velocities across the valve is negligible, then the static enthalpy is conserved. 

 

Example Question: 

Steam flows through a throttle valve.  The pressure upstream of the valve is 5 bar and the fluid is dry 

saturated. If the pressure drop across the valve is 4 bar, calculate the temperature of the steam downstream 

of the valve.  The effects of velocity may be neglected. 

 

 
Flow through a throttle valve 

 

Solution: 

At state 1:  
1 1

1 s

p 5 bar; x 1.0

h 2749kJ / kg; t 151.8 C

= =

= = °
 (see page 4) 

At state 2:  
2

g2 s

p 1bar

h 2676kJ / kg; t 99.6 C

=

= = °
 (see page 4) 

 

For a throttle, neglecting kinetic energy terms, 2 1h h= . 

It is apparent (since 
1 g2h h> ) that in this problem, the steam is going to enter the superheat region.  

Hence, it is necessary to evaluate the temperature of superheated steam at a pressure of 1 bar which has an 

enthalpy of 2749kJ/kg.  The values from the tables are 

 

t (°C) h (kJ/kg) 

100 2676 

150 2777 

 

Hence the value of temperature lies between 100°C and 150°C at 1 bar.  If it is assumed that the enthalpy 

varies linearly with temperature along an isobar then, by similar triangles  

g,100

g,150 g,100

h ht 100 2749 2676

150 100 h h 2777 2676

-- -
= =

- - -
, 

which can be rearranged to give 

2749 2676
t 100 (150 100) 136.1 C

2777 2676

-
= + ´ - = °

-
 

 

U
ni

ve
rs

ity
 o

f M
an

ch
es

te
r 

- 
D

r 
A

m
ir 

K
es

hm
iri



CHAPTER 5 - OPEN SYSTEMS AND ENERGY TRANSFER 

MODERN THERMODYNAMICS     O p e n  S y s t e m s / E n e r g y  T r a n s f e r  | 5.10 

5) Nozzles 

The purpose of a nozzle is to convert the energy stored in the fluid (in the form of pressure) into gas 

velocity.  Typical examples of the use of nozzles in engineering equipment are the propelling nozzles used 

in jet engines, and the nozzles used in steam and gas turbines to produce the flow through the blades.  

Nozzles can take a number of forms, but all are characterised by a change in flow area.  A typical nozzle is 

depicted in the figure below.  This is sometimes referred to as a convergent-divergent nozzle and 

sometimes called a venturi nozzle.  The different names relate to the operating conditions. 

 

 
 

A convergent-divergent nozzle 

(or venturi nozzle) 

 

The gas flowing through the nozzle does so by virtue of a pressure difference between the entry and exit, 

so in this respect the nozzle is similar to the throttle.  The difference between the devices is that the 

purpose of the throttle is to produce a pressure drop without converting the ‘pressure’ energy of the fluid 

into velocity.  The example of an orifice plate mentioned earlier shows the difference between a nozzle 

and a throttle in terms of their flow streamlines.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flow through devices in a pipe (a) orifice plate;  (b) venturi nozzle 

 

It can be seen from this sketch that the flow entering the nozzle (sketch (b)) is streamlined. There are no 

rapid changes in the flow profile, the flow will not separate and will not become turbulent. This flow will 

pass through the nozzle with minimal losses. On passing through the orifice plate however, the flow is not 

constrained downstream by a solid boundary and consequently attempts to fill the pipe.  This results in 

flow separation downstream of the orifice plate, and a great deal of turbulence is established.  This 

turbulence is irreversible, and causes losses in the usable energy in the flow - energy is converted from 

kinetic energy into thermal energy by viscous processes.   
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The nozzle could be considered to be adiabatic, i.e. there are no heat losses, and for each kg of mass 

passing through the device, 0=q .  If the steady flow energy equation is applied then 

( ) ( ) ( )2 2

s e i e i e i

1
q w h h v v g z z

2
- = - + - + -  

It is also obvious that the work term here is zero, and this means that the steady flow energy equation can 

be simplified to 

( )2 2

e i

1
h h v v

2
e i
- = - -  

In many cases, the flow upstream of the nozzle is from a reservoir, and hence is at the stagnation condition 

and 
iv 0= .  Then, the previous equation further simplifies to 

 

( )e i ev 2 h h= -  

 

 

Example Question: 

Steam, at a static pressure and temperature of 100 bar and 600°C respectively, flows down a pipe at a 

velocity of 100 m/s.  It is then expanded in a nozzle down to exit conditions of 6 bar and 200°C.  Calculate 

the velocity of the steam at the exit to the nozzle. 

 

Solution: 
Starting from our simplified form of the steady flow energy equation (It should always be derived from 

first principles with explicit assumptions!) 

( )2 2

e i

1
h h v v

2
e i
- = - -  

can be rearranged to give 

 

( )
2

i
e i e

v
v 2 h h

2

ì ü
= - +í ý

î þ
 

The enthalpies at entry and exit to the nozzle can be evaluated from the tables (pages 8 and 7), giving 

i

e

h 3624 kJ / kg

h 2851 kJ / kg

=

=
 

and substituting these values into the above equation gives 

( )
2

3

e

100
v 2 3624 2851 10 1247.4 m / s

2

ì ü
= - ´ + =í ý

î þ
 

It is obvious from the values of ih  and eh  that the static enthalpy is not the same upstream and 

downstream of the nozzle.  However, the stagnation (total) enthalpies should be the same, and this can be 

proven below: 
2 2

1
01 1 3

2 2

2
02 2 3

v 100
h h 3624 3624 5 3629 kJ / kg

2 2 10

v 1247.4
h h 2851 2851 778.0 3629 kJ / kg

2 2 10

= + = + = + =
´

= + = + = + =
´
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6) Heat Exchangers 

A heat exchanger is a device that allows heat from a fluid (a liquid or a gas) to pass to a second fluid 

without the two fluids having to mix together or come into direct contact.  Heat exchangers can be found 

alongside devices that require cooling e.g. engines, circuit boards etc. They appear in refrigerators, heat 

pumps, ventilation units and all manner of power devices.  The schematic sketch shows a heat exchanger 

positioned within a control volume (CV), where the two fluids involved are distinguished by the 

superscripts 1f  and 2f . 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

The SFEE is applicable and for this case reduces to 
he dm 0=ò m 0 , which in its simplest form provides  

 

( ) ( )1 1 1 2 2 2 0
f f f f f f

out in out inm h h m h h- + - =( )out in out in) ( )2 2f f f f f f( ) ( 2 22 2m h(1 1 1 21 1 1 2(f f f f f ff f f f f f( ) (1 1 1 2 2 21 1 1 21 1 1 2 2 2( ) (out in out iout in out i) ( =)2 22 22 2

ut inh m h h) (1 1 1 2 2 21 1 1 2 2 21 1 1 2) (1 1 1 2 2 21 1 1 21 1 1 2 2 21 1 1 2) (in out iin out iin o) (  

 

arising because there is no shaft work and it is reasonable to assume negligible heat loss to the 

surroundings. 

The heat-exchange process can be visualised as consisting of two parts as depicted: 

 

 

 

 

 

 

 

 

The SFEE for the CV is ( )1 1 1

1

f f f

out inm h h Q- = 1Q1

f f f(m h h(1 1 11 1 1(f f ff f f(1 1 11 1 11 1 1( outout hh1 1 11 1 11 1 11 1 1  

 

 

 

 

 

 

The SFEE for the CV is ( )2 2 2

2

f f f

out inm h h Q- = 2Q2

f f f(m h h(2 2 22 2 2(f f ff f f(2 2 22 2 22 2 2( outout hh2 2 22 2 2 . 

 

Note however that heat energy is exchanged, so 2 1Q Q= -2 1Q Q2 12 1  and addition of the two equations for each CV 

returns the equation for the whole heat exchanger. 

  

 
 

 

Heat Exchanger 
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Conservation of properties across devices 

 

The specific enthalpies at the inlet and outlet of a device are required in order to apply the SFEE.  The 

two-property rule applies but we are often faced with insufficient information at the outlet of a device to 

determine the specific enthalpy.  The following table lists the common assumptions made for the devices 

considered thus far: 

 

Device Assumption Property conserved Identity 

Turbine Reversible and Adiabatic Entropy 
2 1s s=  

Compressor Reversible and Adiabatic Entropy 
2 1s s=  

Pump Incompressible Liquid Energy and Volume 
2 1u u= , 

2 1n n=  

Nozzle Reversible and Adiabatic Entropy 
2 1s s=  

Throttle Irreversible and Adiabatic Enthalpy 
2 1h h=  

Heat Exchanger Negligible Pressure Drop Pressure 
2 1p p=  

 

 

A lot more will be said about entropy and reversibility but for now view entropy as another property that 

can be determined.  

 

With knowledge of any two independent properties for a particular state the rest can be determined (two-

property rule).  Thus, for the device depicted below, with two independent properties at state 1 known, 

then all the other properties at that state can be obtained.  However, it is possible that only one property is 

known at state 2 and to fully define the state another independent property is needed. This is where 

knowledge of the property conserved comes into play (see table) allowing a second property to be 

determined at state 2 and fully defining the state. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 
State 1 

CV for Device 

State 2 
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Tutorial Questions 
 

1. In a steam turbine the flow rate is 5000 kg/hr and the power output is 500 kW.  If the heat loss from 

the casing is negligible, find 

 

(a) the change in specific enthalpy if the velocities and elevation are the same at entry and 

exit; 

 

(b) the change in specific enthalpy if the entry velocity is 100 m/s, the exit velocity is 400 m/s 

and the inlet pipe is 10 m above the exhaust. 

[-360kJ/kg, -435kJ/kg] 

 

2. In a certain process in industry, it is necessary to compress 500 kg of steam per hour from an initial 

state of 1.5 bar, 111°C with x=1 to 5.5 bar.  The temperature after compression is 260° C.  The heat 

transfer from the compressor is 10000 kJ/hr. If kinetic and potential energy changes may be neglected 

determine the power requirement in kW.                                      [42.7kW] 

 

3. Steam enters the nozzle of a turbine with a low velocity and at 30 bar, 350°C and leaves at 20 bar with 

a velocity of 510 m/s.  The rate of steam flow is 5000 kg/hr.  Calculate the quality of the steam 

leaving the nozzle and the exit area.                  [superheated, 284.3
o
C, 

241030.3 m-´ ] 

 

4. Construction of a 1500m tall skyscraper specifies that steam heating be supplied. Assume that the 

steam is supplied to the top of the building by a vertical pipe.   If the steam enters at the ground level 

as dry saturated vapour at 3 bar and transfers 100 kJ/kg in its passage to the top floor where its 

pressure is l bar, find the quality of the steam at this point.                              [0.97] 

 

5. A steady flow of steam enters a condenser with a specific enthalpy of 2000 kJ/kg and a velocity of 

500 m/s.  The condensate leaves the condenser with an enthalpy of 100 kJ/kg and a velocity of 10 m/s.  

If the steam flow rate is 50 kg/s. and the cooling water temperature rise is limited to 30°C, determine 

the cooling water flow rate.                                                     [806.2kg/s] 

 

6. A steady flow of steam at 7 bar and 200°C enters a device. It leaves at the same level and velocity but 

the pressure has increased to 15 bar.  A shaft projecting into the device supplies 500 kJ of work per 

kg, of steam and 700 kJ/kg of steam are lost from the device.  Find the temperature and condition of 

the steam leaving the device.                                                        [x2=0.93] 

 

7. 1 kg of steam at 7 bar and 200°C is contained in a cylinder. It compressed until the pressure becomes 

15 bar.  The work done on the piston is 500 kJ and the heat loss is 700 kJ. Find the final temperature 

and condition.                                                                                                  [x2=0.91] 

 

8. Liquid ammonia at a temperature of 40°C and a pressure of 20 bar is mixed in a steady flow process 

with saturated vapour at 20 bar. The mass flow of liquid and vapour are equal and after mixing the 

pressure is 18.30 bar and the quality 0.85. Calculate the heat transfer per unit mass of 

mixture…………                                                                                                         [390.3 kJ/kg(mix)] 

 U
ni

ve
rs

ity
 o

f M
an

ch
es

te
r 

- 
D

r 
A

m
ir 

K
es

hm
iri



 

 

 

CHAPTER 6 

 
WORKING FLUID: GASES 

 

 

 

THE CHAPTER COVERS: 

 

 

INTRODUCTION TO IDEAL GASES AND AVOGADRO’S HYPOTHESIS   Page 6.2 

BOYLE’S LAW AND JOULE’S (SECOND) LAW      Page 6.3 

JOULE-THOMPSON EFFECT         Page 6.4 

EQUATION OF STATE OF AN IDEAL GAS       Page 6.5 

SPECIFIC HEATS FOR IDEAL AND PERFECT GASES     Page 6.5 

IDEAL GASES IN CLOSED AND OPEN SYSTEMS      Page 6.5 

WORK DONE ON A POLYTROPIC PROCESS (INVOLVING IDEAL GASES)  Page 6.8 

THE MOLAR FORM FOR THE EQUATION OF STATE     Page 6.12 

Avogadro’s Hypothesis          Page 6.12 

Mole, Molar Mass and Molecular Weight       Page 6.12 

Universal Gas Constant          Page 6.14 

Ratio of Specific Heats          Page 6.14 

OTHER EQUATIONS OF STATE        Page 6.14 

GAS MIXTURES          Page 6.16 

TUTORIAL QUESTIONS         Page 6.17 

 

 

 

 

 

Read: Thermodynamics (An Engineering Approach by Cengel & Boles – 8
th
 Ed.) - Chapter 4 “Energy 

Analysis of Closed Systems” pages 174-187. 
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Introduction 

 

This section is principally concerned with ideal gases and in particular the equation of state that relates 

pressure, volume and temperature for a fixed mass of gas in a state of thermodynamic equilibrium.  The 

equation of state (or state equation) takes on a number of equivalent forms.  The founding principle that 

underpins the various relationships is Avogadro’s hypothesis, which states that equal volumes of gas at 

equal pressures and temperatures contain the same number of molecules.  A consequence of this 

hypothesis is that the equation of state can apply to many gases and one form of the state equation is  

pV NkT=  

where k is Boltzmann’s constant and equals 
231.38065 10 J / K-´  and N is the number of molecules.   

This form of the equation provides a link between the microscopic and the macroscopic but is not in a 

form ideal for use by engineers since it involves both large and tiny numbers.  An alternative form used by 

chemists (arising from Avogadro’s hypothesis) uses moles (the amount of substance) rather than N where 

1 mole contains the same number of particles as there are in 12g of carbon-12 (
12

C) atoms, which equals 
236.022 10´  (know as Avogadro’s number) and is the numerical value of Avogadro’s constant 

23 1

AN 6.022 10 mol-= ´ .   

The number of moles n (units of mol) for an arbitrary gas is simply An N N=  and on replacing N in 

pV NkT=  a more convenient equation of state is obtained, i.e.  

( )ApV n N k T n T= = Â , 

where Â  is the universal gas constant and equals 8.3145 J / molKÂ=  (or 8.3145 kJ / kmolKÂ= )   

Although this form is convenient as it now contains manageable numbers it is sometimes advantageous to 

utilise mass m rather than mole n. This can be achieved on definition of the molecular weight (now more 

correctly called the relative molecular mass) which is a dimensionless quantity equal to the ratio of the 

mass of a molecule and one twelfth the mass of a carbon-12 atom.  A quantity having the same numerical 

value as the molecular weight for 1 mole of substance is the molar mass M  (some books confusingly 

refer to this as molecular weight) measured in g / mol  (or kg / kmol ).   

It follows that n m M= , which can be substituted into pV n T= Â  to give  

( )pV m / M T mRT= Â = , 

where R is the characteristic gas constant for the gas under consideration and is measured in units 

J / g K  (or more conveniently kJ / kg K ).  Dividing the equation of state through by m gives a 

particularly convenient form  

p RTn = , 

and similarly dividing by V gives  

p RT= r . 

Note that the equation of state for an ideal gas satisfies the two properly rule since for example ( )p V,T .   

A rather interesting question arises, which is: might the gas law (equation of state) inform us about the 

behaviour of other state functions such as internal energy U (or u) or enthalpy H (or h)?  It transpires that 

it is possible to show that both U and H for a closed system of ideal gas at equilibrium are solely functions 

of temperature, i.e. ( )U T  and ( )H T .  A formal proof of this is left until entropy is introduced but let us 

first examine some experimental evidence that supports the contention. 
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Historical developments 

 

Boyle’s Law 

In 1662, soon after it became possible to pump gases, Robert Boyle discovered an approximate 

relationship between the pressure of a gas and its specific volume. This relation held true when the 

temperature was maintained constant. Boyle found that pv constant=  for temperature t constant= . This 

implied that pv f (t)= , however the relationship only applied to permanent gases, i.e. gases that existed 

at the ambient conditions of the experiment. Today we interpret that to mean fluids that are in a 

superheated state at ‘ambient’ conditions. 

 

Joule’s (second) Law 

In 1845, Joule carried out an experiment whose arrangement is shown below 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the experiment, the left hand container contains gas, while the right hand vessel is completely 

evacuated. A valve separates the two vessels, and the entire apparatus is immersed in a water bath. The 

valve is suddenly opened, and gas flows from vessel 1 to vessel 2. As the gas is undergoing an unresisted 

expansion, the amount of work it does is zero. Joule found that the temperature of the water bath did not 

change during the experiment, indicating that the net heat transfer during the process was zero. From the 

first law 

2 1 1 2 1 2U U Q W- -- = - . 

Now, knowing that both the pressure and the specific volume varied significantly during the experiment, 

Joule was able to conclude  

U U(t) (to experimental accuracy)=  

 

The total intrinsic internal energy for an ideal gas is a function of temperature alone. Since U mu= , and 

( )m m t¹ , it follows that ( )u u t= , i.e. the specific intrinsic internal energy for an ideal gas is a function 

of temperature alone. 

One has to be a little bit careful here because the specific heat for the water is relatively large (

4.18 kJ / kgK» ), so temperature rise could typically be small for a sufficiently large mass of water and 

therefore possibly not picked up by the thermometer used. 

 

Analysis of Joule’s Experiment 

The first law applied to the Joules experimental apparatus gives (in specific quantities) 

du q w= d -d  

but no heat transfer is observed, and the net work done is zero, (as there is a vacuum in container B). 

These two observations lead to 

du 0=  
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Now recall from earlier lectures that any equilibrium thermodynamic state can be found using the two 

property rule. This means that the internal energy can be written u u(T,p)=  or u u(T, )= n , where T is 

the (as yet not formally defined) absolute temperature. Expanding the internal energy differential gives 

p T

T

u u
du dT dp

T p

u u
du dT d

T n

æ ö¶ ¶æ ö= + ç ÷ç ÷¶ ¶è ø è ø

¶ ¶æ ö æ ö= + nç ÷ ç ÷¶ ¶nè ø è ø

 

 

Joule found that during the experiment, the change in water bath temperature was zero, and hence dT 0= . 

During the experiment, both specific volume and pressure changed significantly, implying dp 0¹ , 

dv 0¹ . This leads to the conclusion that, for an ideal gas 

T T

T T

u u
du dp 0 0 u u(T)

p p

u u
du d 0 0 u u(T)

æ ö æ ö¶ ¶
= = Û = Û =ç ÷ ç ÷¶ ¶è ø è ø

¶ ¶æ ö æ ö= n = Û = Û =ç ÷ ç ÷¶n ¶nè ø è ø

 

 

The Joule-Thomson experiment 

In 1852, Joule and Thomson (later Lord Kelvin), devised a steady flow experiment in order to demonstrate 

that the enthalpy of an ideal gas was a function of temperature alone. The experimental arrangement is 

shown in the figure below. 

 

 

 

 

 

 

 

 

 

 

 

 

A porous plug is placed in a pipe. High pressure gas is driven through the pipe and across the porous plug. 

In flowing through the plug, the pressure of the gas is reduced significantly. The pipe is insulated, is 

arranged horizontally and the flow through it has negligible kinetic energy. Recalling that the steady flow 

energy equation per unit mass passing through the systems is 
2 2

s

e i

v v
q w h gz h gz

2 2

æ ö æ ö
- = + + - + +ç ÷ ç ÷

è ø è ø
 

which reduces to 

e ih h=  

i.e. the enthalpy upstream of the plug is the same as that downstream. During their experiments, Joule and 

Thomson measured the temperature upstream and downstream of the porous plug. They found that the 

temperature change across the plug was negligible. As the pressure and specific volume varied 

significantly between the inlet and the outlet of the system, they were able to conclude 

( )h h t alone=  

i.e. the enthalpy of an ideal gas is a function of the temperature alone. The argument behind this statement 

is exactly analogous to that presented for the internal energy. 
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Observation 

It is worth pointing out in passing that e ih h=  with ( )h h t= implies that i et t= , so unlike vapours (and 

real gases) throttling an ideal gas flow has no impact on the gas temperature.  Note also that Boyle’s law 

has shown that (at least approximately) p f (t)n = , and Joules original experiment found internal energy 

to be a function of temperature alone (again, approximately) hence h u pv h(t)= + = .  

 

 

Equation of State of an Ideal Gas 

The discoveries of Boyle, Joule and Thomson can be embodied in a single equation, the ideal gas 

equation of state 

p
constant R

T

n
= =  

 

The constant appearing in the Ideal Gas Law is called the characteristic gas constant, and is usually 

denoted by R.  It is called a characteristic gas constant because it varies from gas to gas.  The units for R 

are J/kgK since [ ]
3

2

p N m 1 Nm J
R

T m kg K kg K kgK

é ù é ù é ùné ù é ù é ù= = ´ ´ = =ê ú ê ú ê úê ú ê ú ê úë û ë û ë û ë ûë ûë û
. 

 

Specific Heats for Ideal and Perfect gases 

An ideal (and perfect) gas satisfies the relationship u u(T)=  but recall the definition of specific heats 

v pc andc , i.e. 

v p

v p

u h
c c

T T

¶ ¶æ ö æ ö= =ç ÷ ç ÷¶ ¶è ø è ø
. 

 

so it immediately follows that v

du
c

dT
=  and p

dh
c

dT
= , i.e. partial derivatives collapse to ordinary 

differentiation.   

 

Despite this these relationships they tell us nothing about the specific behaviour of the specific heats but 

evidently for an ideal gas ( ) ( )v v p pc c T andc c T= = .   

 

In the case of a perfect gas (by definition) the behaviour of the specific heats is rather simple and is 

restricted to that subset of gases for which: v pc const and c const= = . 

 

 

Ideal Gases in Closed and Open Systems 

For closed systems, the first law is written 

 

T

u u
du dT d c dT q w

T v
n

n

¶ ¶æ ö æ ö= + n = = d -dç ÷ ç ÷¶ ¶è ø è ø
 

 

since v

v

u
c

T

¶æ ö =ç ÷¶è ø
 and 

T

u
0

¶æ ö =ç ÷¶nè ø
 arising because ( )u u T= , where it is assumed here that the 

substance is not undergoing a change of phase.  
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Integration gives  
2 2

1 1

u T

2 1 1 2 1 2

u T

du u u c (T)dT q wn - -= - = = -ò ò  

 

More generally, internal energy of an ideal gas at a given temperature T is defined as 

 

o

T

0

T

u(T) c (T)dT un= +ò  

where 0u  is a reference internal energy defined at a temperature 0T .   

 

As the reference temperature is arbitrary, so too is the absolute value of the internal energy 0u .  This 

emphasises the fact that thermodynamics is interested in the change of state of a system (for which, 

reference values cancel out). 

 

Returning to the First Law for closed systems and ideal gases vc dT q w= d -d  where the system of 

interest comprises of a piston in a cylinder, which is allowed to move in order to maintain constant 

pressure 

 

( )

v

p constant

q c dT w

q du pd

d(u) d(p ) d(u p ) dh

c dT d p

c dT RdT

n

n

=

d = + d

d = + n

= + n = + n =

= + n

= +

 

Thus it follows that ( )vq dh c R dTd = = +  and on writing h as a 

differential in terms of two properties 

p

p T

h h
dh dT dp c dT

T p

æ ö¶ ¶æ ö= + =ç ÷ç ÷¶ ¶è ø è ø
 

 

since p

p

h dh
c

T dT

¶æ ö = =ç ÷¶è ø
 and 

T

h
0

p

æ ö¶
=ç ÷¶è ø

.  By comparison, 

( )vdh c R dT,= +  from which we conclude that, for an ideal gas that 

 

Rcc vp +=  

 

or 

vp ccR -=  

In general  

( ) ( )

( ) ( )p p

du
u u T c c T

dT

dh
h h T c c T

dT

n n= = =

= = =
 

it follows that 
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( ) ( )pR c T c Tn= -  

 

 

Similar to internal energy enthalpy is defined as 

 

0

T

p 0

T

h(T) c (T) dT h= +ò  

where 0 0h h(T )=  is a reference enthalpy taken at an arbitrary reference temperature. 

 

 

 

Open systems (steady state) 

In an open system, the First Law in differential form is 

 
h

sde dh vdv gdz q w= + + = d -d . 

This can be written as 

p sc dT vdv gdz q w+ + = d -d  

 

or, in integrated form 

( ) ( )
2

1

T 2 2

2 1
p 2 1 1 2 s 1 2

T

v v
c (T)dT g z z q w

2
- -

æ ö-
+ + - = -ç ÷
è ø

ò . 
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Work done on a Polytropic Process 

While not strictly part of the gas laws, it is useful to examine the work done during polytropic processes 

when the working fluid is an ideal gas. Recall in the lectures on work that engineering processes could 

often be written in the form 
np const.n =  

The process 
np constn =  was referred to as a polytropic process, with n defined as the polytropic index.  

Recall that: 

 

1. 0=n  ( )1 2 2 1w pd p- = n = n -nò  

2. 1¹n  1 1 2 2
1 2

p p
w

n 1
-

n - n
=

-
 

3. 1=n   2 2
1 2 1 1 2 2

1 1

w p ln p ln-

æ ö æ ön n
= n = nç ÷ ç ÷n nè ø è ø

. 

 

Using the gas laws, these may be re-written as 

 

1. 0=n   ( )1 2 2 1w R T T- = -  

2. 1¹n   
( )1 2

1 2

R T T
w

n 1
-

-
=

-
 

3. 1=n   

2 2
1 2 1 2

1 1

1 1
1 2

2 2

w RT ln RT ln

p p
RT ln RT ln

p p

-

æ ö æ ön n
= =ç ÷ ç ÷n nè ø è ø

æ ö æ ö
= =ç ÷ ç ÷

è ø è ø

 

 

Alternative forms for polytropic processes 

Up until this point, polytropic processes have been written in the form 
np const.n =  However, this is not 

the only way of describing a polytropic process. Indeed, equivalent equations relating any two of the three 

primitive variables p,  T,  or n  can be used.  For example given 
np constn =  and p RTn = , then 

n

RT
p const

p

æ ö
=ç ÷

è ø
  

gives 
n

1 n n

n 1

T
p T const.

p

-
-= =  

Similarly 

constv
RT n =÷

ø

ö
ç
è

æ
n

. 

gives 

constTvn =-1
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In conclusion 

constTv

const
p

T

constp

n

n

n

n

=

=

=

-

-

1

1

n

 

   

 

are mathematically identical ways of saying the same thing for an ideal gas, i.e. each of these equations 

describes (for the same value of n), the same polytropic process. 

 

Example Question: 

5 kg of gas, initially at 298 K and a pressure of 1 bar is heated to 600K and 6 bar.  Calculate  

 

1. The work done. 

2. The change in internal energy. 

3. The total heat transferred. 

 

Assume that the process undergone by the gas is polytropic, and that gas can be treated as ideal. 

R = 287 J/kgK;  cp = R (3.3 + 0.00141T)J/kgK. 

 

 

Solution: 

The process is polytropic but the polytropic index is unknown. 

 

Step 1: find the polytropic index 

Given 11,Tp  and 22 ,Tp  and that the process is polytropic, it follows that 
1 n n 1 n n

1 1 2 2p T p T- -=  or 

n

n 1
2 2

1 1

p T

p T

æ ö
ç ÷-è øæ ö æ ö

=ç ÷ ç ÷
è ø è ø

 

solving for n; 

1

2

1 2

2 1

p 1
ln ln

p 6
n 1.641

1 600p T
lnln

6 298p T

æ ö æ ö
ç ÷ ç ÷
è ø è ø= = =

´æ ö æ ö
ç ÷ç ÷ ´è øè ø

 

 

Step 2: find the work done 

Now, we know that n > 1, and so the specific work 21-w  is 

( ) ( )1 2 1 2

R 287 kJ
w T T 298 600 135.2

n 1 0.641 kg
- = - = - =-

-
 

and the total work 1 2W -  is 

1 2 1 2

kJ
W mw 5 135.2 676.1 kJ

kg
- -

æ ö
= = ´ - = -ç ÷

è ø
 

 

§ Step 3: find the change in internal energy 
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( )

( )

( )

{ }

2 2

1 1

2

1

2

1

2

1

T T

2 1 v p

T T

T

p 2 1

T

T

2 1

T

T
2

2 1

T

2 1

u u c (T ')dT ' (c (T ') R)dT

c (T ')dT ' R T T

R (3.3 0.00141T)dT R T T

0.00141T
R 3.3T T T

2

R 2233.8 1046 (600 298)

kJ
254.22

kg

U U 1.271MJ

- = = -

= - -

= + - -

ì üé ùï ï
= + - -í ýê ú

ë ûï ïî þ

= - - -

=

- =

ò ò

ò

ò

 

Step 4: find the total heat transferred 

( )
1 2 1 2 2 1

6 3

1 2

Q W U U

Q 1.271 10 676.1 10

595.1kJ

- -

-

- = -

= ´ + - ´

=

 

 

Perfect Gases 

An ideal and a perfect gas is one, which obeys the relations 
p

const,u u(T)
T

n
= =  and h h(T)=  and in 

the case of a polytropic process each satisfies 
n 1 n np const,p T const-n = =  and 

n 1Tv const- = .  In the 

case of a perfect gas however p

dh
c const

dT
= =  and v

du
c const

dT
= = , which immediately infers that h 

and u are linear functions of T , i.e. 

( )

( )
0

0

T

p 0 0 p 0

T

T

v 0 0 v 0
T

h(T) c dT ' h h c T T

u(T) c dT ' u u c T T

= + = + -

= + = + -

ò

ò
. 

Alternative forms for the equation of state 

Up to now, an ideal or perfect gas has been one which obeys p RTn=  where p = pressure (N/m
2
), n = 

specific volume (m
3
/kg), R = characteristic gas constant (J/kgK) and T = temperature (K). 

An alternative form is obtained by multiplying both sides of the equation with mass; 
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p(m ) mRT

pV mRT

n =

=
 

where V is now the total volume of the system, and has units of m
3
. 

A third way is to take the specific volume appearing in p RTn = and move it to the right hand side of the 

equation 

RT
p RT= = r

n
 

since 
1-n =r , where r  is the density of the gas, and has units of kg/m

3
. 
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The molar form for the equation of state 

 

All of the above gas laws have been based on the mass of the system (i.e. defined in terms of kg).  In 

many applications (such as combustion), using the mass of a particular gas may not be as appropriate as 

using the molar mass of the gas.  As a demonstration, consider the following chemical reaction 

 

234 HCHHCH +®+  

 

In words, the above equation means “during a chemical reaction, 1 unit amount of CH4 (methane) and 1 

unit amount of H are converted to 1 unit amount of CH3 and one unit amount of H2 (hydrogen)”.  Let us 

now examine what is meant by unit amount. 

 

 

Avogadro’s Hypothesis 

In 1811, Avogadro put forward the proposition that “equal volumes of gas at equal pressures  

and temperatures contain the same number of molecules”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this sketch, V1 = V2, and the pressures and temperatures in both containers are equal.  Under these 

circumstances, Avogadro’s hypothesis says something about the numbers of molecules in each container, 

but not their masses.  The examples of H2 and CO2 were picked because carbon dioxide is much heavier 

than elemental hydrogen. The box containing the H2 on the left will (providing p, V and T are the same in 

both containers) be 22 times less massive than the box containing CO2 on the right hand side. 

 

Rather than think on terms of mass, Avogadro thought in terms of numbers of molecules.  He proposed 

the idea of a mole of substance.  Referring back to the above example, Avogadro said that both containers 

contain the same numbers of moles of gas. The chemists refer to this quantity as the amount-of-substance. 

 

How much is a mole of gas? 

· A mole of gas contains NA molecules, where NA is Avagadro’s constant. 

126

123

A

kmol10022045.6

mol10022045.6N

-

-

´=

´=
 

 

How do we relate a mole of gas to its mass? 

To answer this, it is necessary to define the molecular weight.  The molecular weight Mw of a substance is 

defined as the dimensionless quantity 

w

Mass of one molecule of substance
M

(1/12) mass of one atom of carbon 12
=

-
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A quantity having the same numerical value as wM  for 1 mole of substance is the molar mass M  

measured in g / mol  (or kg / kmol ).  To convert the molar mass M of a gas to its associated mass, is 

simply related by 

m Mn=  
where n is the number of moles. 

 

Some molar masses for common gases/elements are given below. 

 

Gas/Element M(kg/kmol) 

H2 2 

O2 32 

N2 28 

CO 28 

CO2 44 

H2O 18 

C 12 

 

Example Question: Find the mass of 6 kmol of O2 

 

Solution:    m Mn 32 6 192kg= = ´ =  

 

Example Question: If a system contains 1.8kg of OHCH3 , find the associated molar mass. 

 

Solution: Firstly, we need to find the molecular weight of OHCH3 . To do this, we sum the molecular 

weights of its constituent components 

( ) ( ) ( ) ( ) ( )
3

w CH OH
M 1 12 3 1 1 16 1 1 32= ´ + ´ + ´ + ´ =  

 

Now, m = 1.8 kg and so   

m 1.8
n 0.05625 kmol

M 32
= = = . 

 

The universal gas constant and the ideal (molar) gas law 

Substitution of m Mn=  into pV mRT=  gives 

pV nMRT=  

 

Now, consider our containers filled with H2 and CO2.  

 

Each container has the same volume, and is filled to the 

same pressure and temperature. 

 

( )

( )

22

22

HH

COCO

p V
M R n

T

p V
M R n

T

=

=
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Since pressure, temperature and volume are the same in both containers, it follows that the number of 

molecules (Avogadro’s hypothesis) and hence the number of moles (since is 

A

N
n

N
= ) is the same i.e. 

2 2H COn n=  

and form the ideal gas equation of state reduces provides 

( ) ( )
2 2H CO

MR MR=  

irrespective of the gases used, the combination  M R  always provides the same constant.  This constant is 

termed the universal gas constant (universal because it applies to all gases) and is defined 

( ) ( )
2 2H CO

J
MR MR 8314.5

kmolK
= =Â = . 

The definition above provides a method for calculating the characteristic gas constant for any gas. 

 

Example Question: Find the characteristic gas constant for methane (CH4). 

 

Solution: 

( ) ( ) ( )
4

4

4

w CH

CH

CH

M 1 12 4 1 16

8314.5
R 519.7J/kgK

M 16

= ´ + ´ =

Â
= = =

 

 

The ratio of specific heats 

In many applications, the ratio of the specific heats plays an important part and it is useful to define 

v

p

c

c
=g  

One of the most important processes encountered in the course is an isentropic process (constant 

entropy). For ideal gases, an isentropic process can be described by equations that look similar to the 

polytropic processes. The difference between polytropic and isentropic processes is that the polytropic 

index g=n , i.e. an isentropic process is defined by the following equations 

constTv

constTp

constp

=

=

=

-

-

1

1

g

gg

gn

 

 

What is meant by an isentropic process is considered later in the course. 

 

Other Equations of State (for information only) 

The ideal gas equation of state can be derived by purely analytic means from statistical mechanics.  The 

derivation is beyond the scope of this course (and, indeed most undergraduate courses), but it does 

highlight what assumptions are implicit in a gas which behaves ideally.  These assumptions are found to 

be: 

 

(i) The molecules are perfectly rigid, elastic spheres. 

(ii) The volume occupied by the molecules is negligible compared to the total  

volume. 

(iii) There are no forces of attraction between molecules. 

 

The last two assumptions become decreasingly accurate if the gas occupies a region close to the saturated 

vapour lines 
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Assumption (ii) holds well in the low density limit. As p / RTr = , this implies that gases behave ideally 

at low pressure and high temperature. 

 

As the pressure increases and the temperature drops, the volume occupied by the molecules must be 

accounted for.  This is done in the Clausius equation of State, 

 

RT
p

bn
=

-
 

 

where b is the volume occupied by the molecules. 

 

As the molecules approach one another, the assumption of negligible attraction becomes questionable.  An 

attempt to accommodate molecular forces levels to the Van der Waals’ equation of state, 

 

2nn
a

b

RT
p -

-
=  

 

where the last term tries to accommodate the forces of attraction and is equivalent to an inverse square 

law.  There are many other equations of state, most notably the virial equation 

 

÷
ø

ö
ç
è

æ +++= ....1
2nn

n
cb

RTp  

 

and the Beattie-Bridgeman equation 

 

÷
ø

ö
ç
è

æ --÷÷
ø

ö
çç
è

æ
÷
ø

ö
ç
è

æ -+÷
ø

ö
ç
è

æ -=
nnn

n
nn

a
A

b
B

T

cRT
p oo 1

1
11

232
 

 

 

where a, b, c, Ao and Bo are constants appropriate to the particular gas. 
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Gas mixtures 

The analysis thus far as been limited to single-component gas systems but it transpires (as a consequence 

of Avogadro’s principle) non-reacting gas mixtures such as air can behave like an ideal gas.  The 

difficulty with applying the equation of state p RTn =  is that the characteristic gas constant is required 

for the mixture.  However, R is still obtainable from the relationship R / M=Â , but in this case M is the 

mean molar mass defined to be M m/ n= . 

 

Consider a two component gas system with 1 2n n n= + , where in  is the number of moles of gas 

component i.  Similarly 1 2m m m= +  where im  is the mass of gas component i.  Note that the molar 

masses for each component are i i iM m / n= .  It follows that  

 

1 2 1 1 2 2 1 2
1 2 1 1 2 2

m m n M n m n nm
M M M y M y M

n n n n n

+ + æ ö æ ö= = = = + = +ç ÷ ç ÷
è ø è ø

 

where 
i iy n n=  are the mole fractions 

It can sometimes be useful to define mass fractions 
i iY m m= .  Analysis of a mixture on the basis of 

mass (or weight) is termed gravimetric analysis whilst analysis on the basis of moles (or volume) is 

termed volumetric analysis. 

 

Example Question: Molar analysis of air indicates that is composed primarily of nitrogen (78%) and 

oxygen (22%).  Determine the characteristic gas constant for the mixture along with mass fractions. 

 

Solution: In this case mole fractions are 
1y 0.78=  and 

2y 0.22= , and the molar masses are 
1M 28=

kg/kmol and 
2M 32= kg/kmol (see table above).  Thus  

1 1 2 2M y M y M 0.78 28 0.22 32 28.88= + = ´ + ´ =  kg/kmol and recall that 8.3145 kJ / kmolKÂ= , so it 

follows that R / M 8.3145/ 28.88 0.288=Â = = kJ/kgK.  Note that 

( )
( )
i ii i i i i

i

n n Mm n M y M
Y

m m m n M
= = = = ,  

so gravimetric analysis reveals 
1

28
Y 0.78 0.756

28.88
= ´ =  and 

2

32
Y 0.22 0.244

28.88
= ´ = . 

 

Example Question: Molar analysis of air indicates that is composed primarily of nitrogen (78.09%), 

oxygen (20.95%), Argon (0.93%) and Carbon dioxide (0.03%).  Given that the molecular weight of Argon 

is 40 determine the characteristic gas constant for the mixture along with mass fractions. 

Solution: Have a go at this yourself and compare your answer with the value in the steam tables on page 

26.  
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Tutorial Questions 
 
1) A gas turbine develops a power of 10,000 kW when the gas mass flow rate is 25 kg/s.  The gas flows 

steadily into the nozzle of the turbine at a pressure of 4 bar and velocity of 150 m/s.  The gas leaves 

the turbine at a pressure of 1.1 bar, a temperature of 482°C and velocity of 300 m/s. The expansion 

process may be assumed to be adiabatic. Assume the gas to be perfect and take  

cp = 1.15 kJ/kgK and R = 0.290 kJ/kgK 

 

 (a)  Calculate  (i) the temperature of the gas entering the turbine; 

      (ii) the flow area at entry to the turbine nozzles. 

 

(b)  If the gas leaving the turbine flows into a cooler; and at the exit of the cooler the gas pressure 

is 1 bar, its temperature is 70°C and the velocity is 100 m/s, determine the heat transfer from 

the gas in the cooler. 

[1132K, 0.137m
2
, -513.8kJ/kg] 

 

2) A cylinder contains 1.4 kg gas at 13.8 bar and 116°C.  The gas expands until the pressure becomes 1.7 

bar and the temperature 43°C, the expansion following a straight line on the p - v diagram. Determine 

the amount of heat received by the gas during the expansion.  Take R = 0.2871 kJ/kg K; cv = 0.718 

kJ/kg K.                                                                        [417.7kJ] 

 

3) Air, with a volume of 0.34 m
3
, at 1 bar and at 27°C is compressed to 0.028 m

3
 according to the law 

pV
1.3 

= constant.  Determine the work done and the heat received by the air.  Take the ratio of specific 

heats, γ = 1.4, and the gas constant, R = 0.2871 kJ/kg K.  

[-320kJ/kg,-80kJ/kg] 

 

4) A mass of 0.5 kg of hydrogen at a temperature of 15°C and pressure of 14 bar expands according to 

the law pV
1.25

 = c until the volume is four times the initial volume.  Determine the work done and heat 

received by the hydrogen.  Take Â = 8.314 kJ/kmol K; γ = 1.4, and molecular weight, M
w
 = 2.                                                                                

[0.7MJ, 0.26MJ] 

 

5) A perfect gas with a mass of 0.5 kg occupies a volume of 0.17 m
3
 and is allowed to expand according 

to the law pV 
γ
 = c until the volume is 0.425 m

3
.  During the expansion the temperature of the gas falls 

to 170°C and the work done is 67 kJ.  If R = 0.2871 kJ/kg K, find (a) the values of cp and cv, and (b) 

the initial pressure and temperature of the gas. 

[1244.1J/kgK, 957J/kgK, 583.2K, 4.92bar] 

 

6) A quantity of gas is expanded from a pressure of 2 bar to 0.9 bar.  The relationship between pressure 

and volume at any point being given by pV 14.029.0 -=  where V is in m
3
 and p in bar. The initial 

temperature is 70°C, cp = 1.004 kJ/kg K and cv = 0.717 kJ/kgK.  Calculate the heat received by the gas 

during the process.                                                                                    [89kJ] 

 

7) The expansion of a perfect gas follows the law p aV b a b= + ,  where  and  are constants.  The initial and 

final pressures are 6.9 bar and 2 bar respectively, and the corresponding volumes are 0.1 m
3
 and 0.33 

m
3
.  The mass of gas is 0.7 kg; R = 0.26 kJ/kg K and g = 1.39.  Find (a) the maximum value of the 

specific internal energy assuming it is zero at 0°C, and (b) the net heat added during the process.                                                                          

[49.53kJ, 94.7kJ] 
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Requires Second Law Material 

8) A gas occupies 0.11 m3 at 1.1 bar and 20°C.  If the gas undergoes a reversible, adiabatic compression 

to 6.7 bar, determine the final temperature, volume and the change of internal energy.  Take R = 0.1901 

kJ/kg K; cv = 0.570 kJ/kg K.                                                                         [459K, 0.03 m
2
, 91.77 kJ/kg] 

 

9) A mass of 1kg of air, occupying 4m
3
 at 8 bar and 200°C, expands isothermally to a volume of 12 m

3
. 

Determine the change in entropy.                                                                                        [7.43 kJ/kgK] 

 

10) A gas, initially occupying a volume of 1 m
3
 at 30°C and 6 bar, expands until the volume is 4 m

3
 

according to the law pV
1.25

 = c.  If the specific heat at constant volume, cv = 13.2 kJ/kg K and the ratio 

of specific heats, γ = 1.4, determine the total change in entropy.                                     [2.744 kJ/kgK] 

 

11) Hydrogen, occupying a volume of 2000 cm
3
 at 1 bar and 30°C, is compressed to 17.85 bar according 

to the law pV
1.35

 = c.  The gas then cools to 100°C at constant pressure after which it is expanded 

isothermally down to 1 bar.  Calculate the change of entropy for each process and show that the sum 

of these changes agrees with the change calculated using the two end points only. Take cp= 13.53 

kJ/kg K and cv = 9.68 kJ/kg K.                               [2812J/kgK] 
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CHAPTER 7 

 
THE SECOND LAW: HEAT ENGINES 

 

 

 

THE CHAPTER COVERS: 

 

 

INTRODUCTION TO ENTROPY        Page 7.2 

THE USEFULNESS OF ENERGY        Page 7.3 

NON-REVERSIBLE PROCESSES        Page 7.3 

HEAT ENGINES (DIRECT AND REVERSED)       Page 7.4 

REVERSIBLE PROCESSES         Page 7.5 

THE SECOND LAW (KELVIN-PLANCK, CLAUSIUS)     Page 7.8 

CARNOT PRINCIPLES         Page 7.10 

APPENDIX I: PROOF OF THE CARNOT PRINCIPLES     Page 7.13 

APPENDIX II: THERMODYNAMIC TEMPERATURE SCALE    Page 7.14 

TUTORIAL QUESTIONS         Page 7.16 

 

 

 

Read: Thermodynamics (An Engineering Approach by Cengel & Boles – 8
th
 Ed.) - Chapter 6 “The 

Second Law of thermodynamics” pages 275-311. 
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Introduction 

 

Thus far from our discourse we have seen that the formularisation and interpretation of the zeroth and first 

laws gave rise to the thermodynamic properties temperature T and intrinsic internal energy U, 

respectively.  Likewise the second law implies the existence of the thermodynamic property entropy 

(symbol S).  Entropy is often considered recondite by students but at this stage can be viewed simply as a 

measure of the quality of energy in contrast to U which a measure of the quantity of energy.  Low entropy 

infers high quality and conversely high entropy means low quality.  Entropy is also linked with other 

words such as disorder, spontaneous and reversibility.   

 

As with T and U a microscopic description of entropy is possible with entropy being a measure of the 

uncertainty in the precise energy levels molecules occupy (this is essentially what is meant by disorder).  

This notion is encapsulated quantitatively by the formula for absolute entropy 

 

S k ln W= , 

 

where k is Boltzmann’s constant and equals 
231.38065 10 J / K-´  and W is a measure of the number of 

ways the molecules of a system can be arranged to achieve the same total energy (the weight of an 

arrangement). This formula does not belong to the realm of classical thermodynamics (more to do with 

statistical mechanics really) so is only of passing interest here.  It is of interest to note (again in passing) 

that at absolute zero molecules are in their lowest state of energy (the ground state) and provided this state 

is unique (non-degenerate) then W 1=  and S kln1 0= = ; reflecting that fact there is no uncertainty in 

the distribution of energy at absolute zero.  Entropy is essentially a measure of nature’s proclivity for 

disorder as opposed to order. 

 

The word spontaneous mentioned above refers to a change not needing to be driven by work.  The flow of 

energy from a hot reservoir to a cold reservoir in the form of heat is a spontaneous change.  A particular 

manifestation of the second law is that the entropy of the universe (system plus surrounding) increases in 

the course of any spontaneous change.  Since loosely speaking the word spontaneous is synonymous with 

the word natural it is clear that second law in this form infers that natural processes result in the energy of 

substances lowering in quality (which is rather worrying!). 

 

Another word highlighted is reversibility which refers to a reversible process or reversible cycle if the 

process is cyclic. This is a process that can be reversed by means of infinitesimal changes in some 

property of the system without dissipation of energy (entropy production). The system is in 

thermodynamic equilibrium throughout the entire process and since it would take an infinite amount of 

time for the reversible process to finish, perfectly reversible processes are impossible.  The importance of 

reversible processes which are cyclic is that they do not involve entropy production.  Moreover, the 

classical definition for entropy in differential form is 

 

revQ
dS

T

d
=  

 

where revQd  is an increment of heat reversibly applied. 

 

Classical thermodynamics introduces the second law via devices called heat engines, which operate 

between thermal reservoirs, where a thermal reservoir is a hypothetical body with an infinite heat 

capacity. The defining quality of a reservoir is that it can reject or absorb quantities of heat without 

changing temperature.  A heat engine is a continuously operating thermodynamic system, across the 

boundaries of which only heat and work can flow, where the phrase continuously operating implies that 

the working fluid in the heat engine undergoes a cycle. 
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The Usefulness of Energy 

Consider a ship on the ocean and assume that the sea temperature is uniform.  The sea must contain 

countless Giga Joules of energy as a result of the water having a temperature above absolute zero. Is it 

possible however build a ship’s engine that extracts heat directly from the sea, and converts that energy 

into shaft work to drive the ship? 

 

 

 

 

 

 

 

 

 

Similarly consider a box containing gas. Into one side of the 

box is inserted a paddle wheel. Suppose now that the gas is 

heated. From the first law applied to the initial heating 

process 012 >-= uuq . 

 

§ Why does the system not drive the shaft?  

§ Why must sw 0= , even though the intrinsic internal energy of the fluid has been increased? 

§ Using the same box, why is it possible to convert work to heat directly, but not possible to convert 

      heat into work directly? 

 

 

Non-reversible processes 

A glass of water on a table contains potential energy (as well 

as water!) as a result of its position on the table top. If the 

glass falls, potential energy is converted into kinetic, acoustic 

and thermal energy (from falling, shattering and bringing the 

moving water to rest via viscosity, respectively). The first 

law is satisfied by the system. The reverse would also be 

true, i.e. if all the liquid converts its thermal energy back into 

the reassembling glass, which then leaps back up onto the 

table, the energy of the system will also be conserved. Why 

does the second case never occur? 

 

 

 

The second law of thermodynamics provides an answer to these types of questions.  As mentioned the 

second law gives rise to another property of working fluids called entropy. Unlike energy, entropy is 

generally NOT a conserved quantity.  Rather, in all real processes, the entropy of an appropriately defined 

system always increases.  To put it another way processes that satisfy the first law but not the second are 

not possible (the above ship, paddle wheel, glass on table.).  Most importantly of all the second law puts a 

theoretical limit on even the most perfect thermal machines. 

  

 
Figure 2 

 

 
Figure 1 
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Heat Engines 

Heat engines differ considerably in detail from one another but they all share the following characteristics: 

 

They receive heat from a high temperature reservoir. 

They convert part of this heat to work. 

They reject the remaining (waste) heat to a low temperature reservoir. 

They operate in a cycle. 

 

There are two types of heat engine; direct and reversed. 

 

In a direct heat engine, 1Q  is supplied to the engine at temperature 1T . Inside the engine, part of the heat 

transfer is converted to work (shown here as shaft work sW ). A quantity of heat 2Q  is rejected to a 

reservoir at temperature 2T . 

In a reversed heat engine, a work transfer into the device occurs. This shaft work is then used to pump 

heat from a low temperature reservoir at temperature 2T  into the high temperature reservoir at 1T .  

 

Examples of heat engines 

 

Steam turbine power plant (direct heat engine) 

 

In this example, the heat engine comprises 

of all the components lying within the 

system boundary. Notice that the steam 

turbine itself is NOT a heat engine, because 

work AND mass are transferred across the 

system boundaries of the turbine. The 

important mass transfers in this system are 

the fuel, air and exhaust gases. 

 

 

 

 

 

 

 
Figure 3a: Direct heat engine 

 

 
Figure 3b: Reversed heat engine 

 

Figure 4 
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Refrigerator (reversed heat engine) 

 

In this example, heat transfer takes place 

between the working fluid and the 

evaporator located in the ice box. Fluid 

enters the condenser as a vapour at high 

pressure and (relatively) high temperature, 

where it condenses to a liquid phase at 

lower temperature. The cooled liquid 

flows through a throttle valve, where the 

pressure and temperature drop 

considerably (remember, a throttle valve is 

an isenthalpic process). The cold, low 

pressure fluid then draws heat from the ice 

box, which subsequently cools. As it is 

heated, the working fluid evaporates. The 

warmed vapour is then pumped up to the 

condenser pressure, where the process 

starts again. The heat engine is again 

defined as all of those components lying within the system boundaries. 

 

 

The refrigerator is an example of a reversed heat engine. Do NOT confuse the words ‘reversed’ and 

‘reversible’! 

 

 

 

The refrigerator is called a reversed heat engine because work is transferred into the engine, and this work 

is used to transfer heat from a cold environment (ice box) to a warm environment (the room in which the 

fridge stands).  The objective of a fridge is to draw heat from a low temperature reservoir and, using an 

input work transfer, reject this heat into a higher temperature environment. 

 

A similar device to the fridge is the heat pump. This too is an example of a reversed heat engine.  The 

objective of a heat pump is to take heat from a low temperature reservoir and, using an input work 

transfer, use it to provide (say) domestic heating. 

 

Considering the example shown in Figure 3b. This reversed heat engine can be run either as a refrigerator 

or a heat pump. As a refrigerator transfer heat 2Q  from the ice box is the desired ‘output’.  As a heat 

pump, then transfer heat 1Q  to the house for domestic heating purposes is the desired output here.  

 

Reversible processes 

Processes in nature generally occur in one direction with time. As an example, a hot cup of coffee left on a 

table will eventually cool via conduction and convection. This process is irreversible, by which we mean 

that no matter how long we wait, the cold coffee in the cup will not spontaneously gather all the heat 

energy lost to the surroundings and warm itself. 

 

A reversible process is one that can be made to take place in either forward or reverse directions by 

changing the conditions in the surroundings by ONLY an infinitesimal amount. A reversible process is a 

one that can be reversed without leaving any net effect on the surroundings.  

 

 

 

 
Figure 5 
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Consider the following example: 

Both processes (a) and (b) are quasi-static. In 

system (a), the pressure in the expanding bag is just 

sufficient to overcome the resistance of the mass 

(assuming no friction), which rises infinitely slowly. 

In system (b), the pressure in the bag is just 

sufficient to overcome the friction in the block, 

which slides infinitely slowly. 

System (a) is reversible; by lowering the pressure in 

the bag by a very small amount, the system can be 

made to work in reverse. The potential energy in the 

mass can be recovered. 

System (b) is irreversible; in doing work against 

friction, the displacement work in the bag is 

converted directly to heat. We cannot convert the 

thermal energy produced by friction into a means of 

recompressing the bag. 

 

 

 

So what is meant by ‘no net external effect on the surroundings’? 

Consider again both systems (a) and (b) in Figure 6. After the masses have moved some arbitrary finite 

distance in both systems, the pressures in both bags are allowed to reduce by an infinitesimal amount. 

Consequently, the bags start to contract. To be reversible, the systems must return to their original 

respective states without any further input from the surroundings. At the end of the contraction process, 

we find 

§ System (a) is back exactly where it started with no further input-it is reversible.  

§ To get system (b) back into its initial configuration, we have to move the block back to its starting 

position. In order to do this we (as part of the surroundings) have to do further work on the block. This 

means that the expansion/contraction of the system has had an effect on us (the surroundings) and also the 

block. Energy has had to be withdrawn from the surroundings in order to return the system to its initial 

configuration and the block is now hotter than it was initially. The energy in the universe has been 

conserved—but it has changed ‘character’. System (b) is therefore irreversible. 

 

No processes in nature are reversible, so why do we study reversible processes? 

They provide a theoretical limit for physical processes. It will be shown that even perfect (i.e. 

reversible) heat engines have thermal efficiencies of less than unity. These limits then serve as guides in 

the analysis and design of engineering applications. 

The example above demonstrated that frictional processes lead to irreversibility. It can also be 

shown that if heat transfer takes place between two reservoirs with temperatures differing by a finite 

quantity TD , then there will be a resultant irreversibility. Only in the limit of heat transfer between two 

reservoirs whose temperatures differ by dT  will the process become reversible. 

 
Figure 6 
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Figure 7 

 

Reversible heat engines 

A reversible heat engine is one that involves no irreversibility as a result of friction or heat transfer across 

a finite temperature gradient. In the case of a direct 

heat engine; 

§ We assume that the heat supplied to the ‘top’ of 

the engine is at 1T  – no finite temperature gradient 

§ The heat rejected from the ‘bottom’ of the 

engine is at 
2T -- no finite temperature gradient 

§ The engine is externally reversible, 

because the heat transfer from the reservoirs (i.e. 

external to the engine) takes place reversibly 

(without finite temperature gradient). 

 

The reversible heat engine is also internally reversible.  As the name implies, the components of such an 

engine are frictionless and do not introduce transient phenomena such as pressure waves or pressure drops 

across valves.  

 

  

 
Figure 7 

 

 

 

 

Figure 1 

U
ni

ve
rs

ity
 o

f M
an

ch
es

te
r 

- 
D

r 
A

m
ir 

K
es

hm
iri



CHAPTER 7: HEAT ENGINES 

MODERN THERMODYNAMICS  H e a t  E n g i n e s  | 7.8 

Statements of the second law of thermodynamics 

 

The Kelvin-Planck statement of the second law of thermodynamics 

 

 

It is impossible for any device that operates in a cycle to receive heat from a single reservoir and produce 

a net amount of work. 

 

 

Schematically the second law is depicted as 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Important observation:  

The second law does not rely on any vague assumptions regarding friction or other irreversibility. It is a 

fundamental physical feature of work producing machines. Some of the heat supplied to a machine is 

ALWAYS rejected (wasted) to a low temperature reservoir. Note also that, like the first law, the second 

law of thermodynamics is an observational law. It cannot be derived rigorously from theory alone. 

Overwhelmingly however, experimental evidence supports the second law. 

 

In summary, the first law and second law together state that 

§ The net work done by a heat engine = the net heat supplied   

§ The gross heat supplied > the net work done. 

 

An alternative, equivalent from of the second law is embodied in the Clausius statement; 

 

The Clausius statement of the second law of thermodynamics 

 

 

It is impossible to construct a device that operates in a cycle and produces no effect other than the transfer 

of heat from a lower temperature body to a higher temperature body. 

 

 

The equivalence of the two statements is given in chapter 5 of Çengel and Boles but also re-examined 

after entropy is introduced. 

 

The second law and efficiency 

According to the first law of thermodynamics, heat and work transfers are forms of energy transfer, and 

energy is conserved. A thermodynamic system obeying the first law would look something like  

 
Figure 8:  possible and impossible heat engines 
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The engine could be reversible or irreversible. In 

the case of a reversible engine, the ‘efficiency’ of 

such a device would be 100%. The engine would 

violate the second law. 

 

 

 

 

The second law provides a meaning for the notion of thermodynamic efficiency. 

Efficiency is defined here as: 

giveyou what 

you wantwhat 
'efficiency' =  

 

It is usual in the discussion of heat engines to drop our usual sign convention for heat and work, and deal 

instead only with magnitudes. The directions of heat and work transfer are easily found by inspection 

thermal efficiency of a heat engine  s
th

1

W

Q
= h =  

coefficient of performance of a refrigerator  2

s

Q

W
= b =  

coefficient of performance of a heat pump  1

s

Q
'

W
= b =  

Note that, for heat engines, 1<thh , and the nomenclature is correct. For reversed heat engines, the 

‘efficiency’ is effectively related to the reciprocal of thh  and in consequence is usually greater than one.  

The term coefficient of performance is used because efficiencies of greater than one are usually a sign of 

an incorrect calculation! 

 
 

Different types of 'efficiency' 
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Heat Engine efficiency: s 1 2 2
th

1 1 1

W Q Q Q
1

Q Q Q

-
h = = = -  and by the second law 2Q 0>  therefore th 1h <  

Refrigerators and heat pumps: 

2 2 1 1 2 1

s 1 2 1 2 1 2

Q Q Q Q Q Q
1 ' 1

W Q Q Q Q Q Q

- +
b = = = = - = b -

- - -
 

so ' 1b =b+ , i.e. the coefficient of performance of a heat pump 'b , is always 1.0 greater than that of a 

refrigerator b . This is because 1 2 sQ Q W= + . 

 

 

Corollaries of the second law 

It is possible to deduce a number of corollaries from the second law via logical argument. The first two of 

these corollaries are the most important, and these are referred to as Carnot principles. 

Corollaries 1 and 2 (The Carnot principles) 

1) The efficiency of an irreversible heat engine is always less than the efficiency of a reversible one 

operating between the same two reservoirs 

2) The efficiencies of all reversible heat engines operating between the same two reservoirs are the same 

(Sample proof given in appendix I) 

 

 

Altogether, there are five main corollaries of the second law and corollary 3, in conjunction with the 

Carnot principles can be used to define the thermodynamic concept of absolute temperature. 

 

Absolute temperature 

Corollary 3 

A temperature scale may be defined which is independent of thermometric substance  

(Sample proof given in appendix II) 

 

A consequence of the definition of the thermodynamic temperature scale is the result 2 2

1 1rev

Q T

Q T

æ ö
=ç ÷

è ø
 

pertaining to a reversible heat engine. 

 

Reversible heat engines 

s 1 2 2
th

1 1 1

W Q Q T
1

Q Q T

-
h = = = - .  

Reversible refrigerators and heat pumps 
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1 1 1

s 1 2 1 2

2 2 2

s 1 2 1 2

Q Q T
'

W Q Q T T

Q Q T

W Q Q T T

' 1

b = = =
- -

b = = =
- -

b = b+

 

From the equation for efficiency of a reversible heat engine, it is apparent that the most efficient heat 

engines are those that operate with the largest possible difference in temperatures between hot and cold 

reservoirs. In that case, 2

1

T
1

T
<< , and thh  attains a high value. The idea that engines grow more efficient 

as the temperature ratio across them increases leads us to the idea that energy can have an associated 

quality.  

 

Example Question: 

 

 

 

 

 

 

 

 

 

For the two engines shown, calculate: 

1) The work done 

2) The heat rejected  

3) The thermal efficiency 

 

Solution: 

For the left hand engine, 

2
th

1

s th 1

2 1 s

Q500 2
1 1

1500 3 Q

2
W Q 100 66.7kJ

3

Q Q W 33.3kJ

h = - = = -

= h = ´ =

= - =

 

 
Figure 9 
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For the right hand engine  

2
th

1

s th 1

2 1 s

Q500 1
1 1

1000 2 Q

1
W Q 100 50.0kJ

2

Q Q W 50.0kJ

h = - = = -

= h = ´ =

= - =

 

 

In both of these examples, the engines are supplied with the same quantities of heat energy. In the first 

case, the engine is able to do more work than in the second case. This is because the heat was supplied at a 

higher temperature.  The quality of the heat supplied to a reversible heat engine is a measure of its 

capacity to do work.  Hence, in the examples just quoted, the energy supplied to the first engine had a 

higher quality than that supplied to the second engine. When heat is transmitted across a finite temperature 

gradient, its quality is degraded. 

 

Work is a higher quality of energy transfer than is heat. This is because all of the work input into a system 

can be converted to heat. However, not all the heat supplied to a system can be converted to work (the 

Kelvin-Planck statement of the second law).  The concept of energy quality is closely tied to the 

thermodynamic property of entropy. 
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Appendix I: Proof of the Carnot principles 

A proof by contradiction is provided here making use of the second law. Consider two engines (an 

irreversible engine and a reversible engine) operating between the same reservoirs.  Assume that the 

irreversible engine has a greater efficiency than the reversible engine. 

Both engines are supplied with equal quantities 

1Q  of heat. By assumption 

( ) ( )
RthIth hh >  

 

and so 

 

( ) ( )
RI

RI

QQ

WW

22 <

>
 

 

Now, suppose the reversible heat engine is ran 

as a refrigerator. The work consumed by the 

reversible refrigerator will be supplied by part 

of the output of the irreversible heat engine. A 

net quantity of work 
RI WW -  will be available 

from the heat engine/refrigerator arrangement. 

 

 

 

The hot reservoir supplies 
1Q  to the irreversible engine, 

and is supplied with 
1Q  from the reversible refrigerator. 

The hot reservoir supplies no net heat, and is effectively 

redundant. We can replace the original arrangement 

with the one shown here. 

 

Turning now to the cold reservoir, we observe that the 

cold reservoir receives ( )
I

Q2  from the irreversible heat engine, and supplies ( )
R

Q2  to the reversible 

refrigerator.  

Now, as ( ) ( )
RI

QQ 22 <  by assumption, it follows that 

we can again replace the heat engine/refrigerator 

configuration with the one shown on the left. We can 

combine the heat engine/refrigerator pair to form a new, 

single heat engine. This is shown in the sketch as the 

dotted box. 

What is evident is that our configuration is behaving as a 

single heat engine, producing a net quantity of work 

( )RI WW - , while being supplied with heat 

( ) ( )
RI

QQ 22 -  from a single (cold) reservoir. Such a 

device would violate the second law of thermodynamics 
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(see the Kelvin-Planck statement). Consequently, our initial assumption must be wrong, i.e. it is not 

possible that ( ) ( )
RthIth hh > . Hence, corollary 1 follows. 

 

One can obtain the proof of corollary 2 by exactly the same line of reasoning. In this case, however, we 

replace the irreversible heat engine with a second reversible heat engine. We then assume that this second 

engine has a greater efficiency, and proceed with the proof as before. 

 
 

Appendix II: Absolute Temperature Scale 

One of the consequences of the second Carnot principle is that the efficiency of a reversible heat engine is 

dependent only on the temperatures at which heat is supplied and rejected.   

For a reversible heat engine, then ( )21,TTfth =h  but, 

since 
1

21
Q

Q
th -=h , it follows that 

( )12

1

2 ,TTf
Q

Q
= . 

Suppose now we have three reversible heat engines 

configured as in Figure 11, and operating between the 

same hot and cold reservoirs. 

 

 

Suppose that the two reversible heat engines ‘A’ and ‘B’ 

are combined to make a single heat engine denoted by the dotted line.  This ‘combined’ heat engine is 

reversible, as it is made of reversible components. In effect, we have two reversible heat engines working 

between the same two thermal reservoirs. Consequently, the heat supplied to the combined heat engine is 

the same as that supplied to heat engine ‘C’. 

For engine C the efficiency ( )C 1 3f T ,Th =  and similarly for the two engines A and B, ( )A 1 2f T ,Th =  

and ( )b 2 3f T .Th = , where 2T  is the temperature at which heat is rejected from engine A. From these 

equations, it follows that 

( )

( )

( )31

3

1

32

3

2

21

2

1

,

,

,

TTf
Q

Q

TTf
Q

Q

TTf
Q

Q

=

=

=

 

Thus 

 
Figure 10 
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( ) ( ) ( )1 1 2
1 3 1 2 2 3

3 2 3

Q Q Q
f T ,T f T ,T f T ,T

Q Q Q
= = = ´ , 

Now comes the clever bit! The left hand side of this equation is a function only of 
1T  and 

3T . Therefore, 

the right hand side of the equation can only be a function of 
1T  and 

3T . This can only be true if  

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )3

2
32

2

1
21

3

1
31

,

,

,

T

T
TTf

T

T
TTf

T

T
TTf

f
f

f
f

f
f

=

=

=

, 

where f  is an arbitrary function.  The selection of the function f  is entirely arbitrary, other than it must 

satisfy the previous relationships. Basically, any monotonic function is satisfactory, however.  Kelvin 

suggested that ( )T Tf =  be used as a temperature scale in order to provide the relation 

1 1

2 2rev

Q T

Q T

æ ö
=ç ÷

è ø
 

It is worth remembering that this definition still does not give us a scale to work with, as it only defines 

the ratios of temperatures in reversible heat engines. In 1954, the Kelvin was defined via the triple point of 

water. At the international conference on weights and measures, the triple point of water was assigned the 

temperature of 273.16K. The magnitude of 1K was then defined as 1/273.15 of the temperature interval 

between absolute zero and the triple point temperature of water. To convert a temperature t measured in 

Co
 to a temperature T measured in K, we use 

T t 273.15= +  

Using the definition of absolute temperature provided by Kelvin, we have, for the following relations for 

efficiencies 
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Tutorial Questions 
 

 

1. Exhaust steam from a process plant is to be used as a source of heat for a heat engine.  Steam is 

available at a pressure of 1.2 bars, dryness fraction 0.7.  Heat transfer from the steam to the engine 

causes the steam to condense to a saturated liquid at 1.2 bars.  River water is available at a mean 

temperature of 10°C.  What is the maximum possible power that could be developed by the engine 

when exhaust steam mass flow rate is 4000 kg/hour.  

                                                                       [438.1kW] 

 

2. A refrigerator having a coefficient of performance two-thirds of that of a refrigerator operating on the 

reversed Carnot cycle works between a cold store at - 10°C and a river at 20°C, which is used to cool 

the working fluid.  If it requires 3 kW input to drive it, how much heat will it absorb from the cold 

store in one hour?               [63.12MJ/Hr] 

 

 

3. A reversible heat engine operates between two reservoirs at temperatures of 800 K and 300 K. The 

engine drives a reversible refrigerator which operates between reservoirs at temperature of 300 K and 

250 K.  The heat transfer to the heat engine is 1000 kJ.  The net output of the combined engine-

refrigerator plant is 100 kJ. 

(i) What is the heat transfer from the reservoir at 250 K to the refrigerant?                [2625kJ] 

(ii) What is the net heat transfer to the reservoir at 300K?               [3525kJ] 
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Read: Thermodynamics (An Engineering Approach by Cengel & Boles – 8
th
 Ed.) - Chapter 7 “Entropy” 

pages 329-373. 
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Introduction 

 

Recall that a microscopic description for entropy is possible, encapsulated quantitatively by the formula 

 

S k ln W= , 

 

where k is Boltzmann’s constant and equals 
231.38065 10 J / K-´  and W is a measure of the number of 

ways the molecules of a system can be arranged to achieve the same total energy (the weight of an 

arrangement).  

 

It is of interest to explore (in passing) the application of this formula for a simple system initially in 

contact with two thermal reservoirs as depicted in (1) with 
2 1T T> . 

 

A linear temperature gradient is present in the system. 

 

 

 

 

 

 

 

(1) Reservoirs in place. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2) Reservoirs are removed and the thermally-insulated  

system attains thermal equilibrium after a period of time. 

 

The system has a final uniform temperature. 

 

 

The entropy of the system in (1) is lower that that in (2) as a consequence of the inequality 
1 2W W< .  

This follows because in (1) high energy molecules must occupy positions on the right hand side with 

lower energy molecules placed on the left.  In (2) however molecules are interchangeable and can be 

placed anywhere without affecting the total energy of the system.  Both systems are assumed to have the 

same energy but 
1 2S S<  and in fact the system has moved in the direction of increasing entropy attaining 

a maximum at thermal equilibrium. 

 

A form of the second law is that the entropy change of an isolated system always increases or, in the limit, 

stays the same. 

 

  

 System 

System 
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The Origins of entropy 

 

In the following, we will explore the consequences of corollaries 4 and 5, arising from the second law of 

thermodynamics. Corollary (4) gives the Clausius inequality, while corollary (5) provides the definition 

for the thermodynamic property of entropy. 

 

Corollary 4 of the second law is 

Corollary 4 

Whenever a system executes a cycle, 0
C

Q

T

d
£ò  

 

Proof: 

A simplified proof is presented here to show the Clausius 

inequality. Consider the reversible engine shown in the sketch.  

Assume that the hot reservoir is at temperature 1T , and the cold 

reservoir is at temperature 2T . The first law applied to this engine 

provides 

1 2 s
C

Q Q Q W 0d = - = >ò  

 Since 1T  and 2T  are constant, one can write 

1 2

1 2
C

Q QQ

T T T

d
= -ò , 

But for a reversible heat engine 1 2

1 2

Q Q

T T
=  and hence, in summary 

ò

ò
=

>

0

0

T

Q

Q

d

d
 

Replacing the reversible heat engine with an irreversible one supplied with the same quantity of heat.  

This is less efficient so 

RI WW <  

where the suffices I and R refer to irreversible and reversible, respectively. The inequality between 

irreversible and reversible work transfer implies 

( ) ( )
( ) ( )

RI

RI

QQ

QQQQ

22

2121

>

-<-
 

i.e. the heat rejected from an irreversible engine is greater than that rejected from a reversible engine. It 

follows that 
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( ) ( ) ( )

( ) ( ) ( )

2 2 21

1 2 2 2

2 2 21 1 1

1 2 1 2 1 2

,

,

0 0

I I I R

C

I R I R

C

I R I

C C C

Q Q QQ Q

T T T T T

Q Q QQ Q Q Q

T T T T T T T

Q Q Q

T T T

d

d

d d d

= - >

- < - < -

< = Þ <

ò

ò

ò ò ò

 

 

In summary: for reversible engines; 

0

0

C

C

Q

Q

T

d

d

>

=

ò

ò
 but for irreversible engines; 

0

0

C

C

Q

Q

T

d

d

>

<

ò

ò
. 

 

A slightly quicker approach to the analysis above is to note that: 

( ) ( )1 22 2

1 1 1 2

1 1 0I I I
I R

C
I

Q QQ T Q

Q T T T T

d
h h

æ ö
= - £ = - Þ - = £ç ÷

è ø
ò . 

 

The crude “proof” above is only intended as an illustration and it is important to appreciate that the 

temperature in the Clausius inequality applies to the working fluid and not the reservoirs.  No distinction 

was made in the “proof” although for a reversible engine these do in fact match. 

 

Corollary 5 

0R

C

Q

T

d
=ò  for any reversible cyclic process. Hence ò T

QRd
 is a property of any reversible process 

between a reference state 0 and any other state 1. This property is called entropy. 

 

Proof 

The first part of this corollary is a verification of the 

derivation performed for the previous corollary.  

On the left is the diagram for two arbitrary cyclic 

processes. We have used the p-v merely for clarity—

any two thermodynamic properties would do just as 

well as coordinates. The path the system follows 

initially is 1-A-2-B-1. Suppose that the system is 

reversible. This implies that the heat and work transfers 

are equal in magnitude, but opposite in sign. The suffix 

‘R’ is used to denote the fact that reversible heat and 

work transfers are being performed. When the process 

takes place in the forward direction 1-A-2-B-1, we have 

established that 
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0R

C

Q

T

d
£ò  

Suppose we now run the system backwards. This is acceptable, as all the processes have taken place 

reversibly. The heat transfers change sign but remain the same magnitude. The cyclic integral in the 

reversed case becomes 

0R

C

Q

T

d
³ò  

However, this relationship can ONLY satisfy corollary 5 if 

0R

C

Q

T

d
=ò  

Hence this establishes the first part of the desired result.  

The existence of entropy can be established in the same way as the existence of energy was established 

from the first law.  Imagine two cycles drawn on a property diagram (as depicted in figure). We will 

denote those cycles here as 1-A-2-B-1, and 1-A-2-C-1. The letters denote the routes followed, and the 

numbers denote the end states. We assume that the cycles are reversible, and hence ò = 0
T

QRd
 for each 

cycle. Expanding this integral out for the two cycles 

0

0

1221

1221

=+

=+

òò

òò

----

----

C

R

A

R

B

R

A

R

T

Q

T

Q

T

Q

T

Q

dd

dd

 

Equating the two sides of this equation and simplifying, we find 

òò
----

=
1212 C

R

B

R

T

Q

T

Q dd
 

Now, the end points are the same in both of these processes, but the routes followed differs—one route 

follows path ‘B’, while the other follows path ‘C’. This means that the quantity 
T

QRd
 must be a property. 

The property was named entropy by Rudolph Clausius in 1865, and was named after the Greek word 
troph , which means transformation. The entropy of a system is denoted by a letter s or S, and is defined 

according to 
RQ

dS
T

d
=  or 

rq
ds

T

d
=  or S m s= ´  or 

2

2 1

1

RQ
S S

T

d
- = ò . 

It is entropy, and not energy alone, which is the important ‘flowing quantity’ in machines producing 

work. 

The production of motive power is not due to the ‘consumption’ of entropy, but due to its transportation 

from hot bodies to cold ones 
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Entropy determination using RQ
dS

T

d
=  (or Rq

ds
T

d
= ) 

Using the expression 
RdS Q Td= is rather abstract as it involves imagining an artificial process for the 

reversible supply of heat. 

Example1: Isobaric heating of H20 

Consider the slow heating of a container of H2O held at constant pressure as illustrated in the figure 

below. 

Consider first the 1
st
 law in incremental form, i.e. du q q pdvd dw d= - = - , which implies 

( )q du pdv d u pv dhd = + = + = .  To apply Rq
ds

T

d
= , we must 

relate this to q dhd = , which can be achieved for an imagined 

reversible supply of heat from a reservoir of infinitesimal higher 

temperature than the system as illustrated in the figure. 

Process 1-2: R pq Tds dh c dTd = = =  or p

dT
ds c

T
= , which 

integrates to give 2
2 1

1

393
ln 4.2ln 1.53

273
p

T
s s c

T

æ ö æ ö- = = =ç ÷ ç ÷
è øè ø

kJ/kgK 

In steam tables ( )@2 1.53fs bar = kJ/kgK. 

Process 2-3: 2Rq Tds T ds dhd = = =  or 
2

dh
ds

T
= , which integrates 

to give 3 2
3 2

2 2

2202
5.6

393

fg

fg

hh h
s s s

T T

-
- = = = = = kJ/kg, as provided in the steam tables. 

 

Frictionless 

Piston 

(a) Initial State (c)  

T1=273K 

p1=2bar 

p3=2bar 

Figure. Slow Isobaric Heating of fluid in a Cylinder  

T3=393K 

x3=1 (b)  

T2=393K 

p2=2bar 

x2=0 

Water 

Saturated 

Water 

Saturated 

Steam 

T 

T+dT 
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Example2: Hot Copper Block in a Lake 

Consider further the placing of a copper block of mass 1m = kg and of specific heat capacity 0.4c =
kJ/kgK in the centre of a very large lake.  The temperature of the lake is 300T = 30= K, whilst the initial 

temperature of the block is 1 350T = K.  The block cools and eventually matches the temperature of the 

lake, i.e. 2 300T T= = 300= K.   

We would like to work out the entropy change of the universe 

consisting of the block and the lake for this process. 

 

Consider first the 1
st
 law in incremental form, i.e. 

Q dU mcdTd = = .   

To apply RQ
dS

T

d
= , we must relate this to Q mcdTd = , 

which can be achieved for an imagined reversible supply of 

heat from a reservoir with a temperature  infinitesimally 

higher than the block.    

This gives 
RmCdT Q TdSd= =  or 

dT
dS mc

T
= , which 

integrates to give: 

2

1

300
ln 1 0.4ln 0.062

350

T
S mc

T

æ ö æ öD = = ´ = -ç ÷ ç ÷
è øè ø

kJ/K (Observe that entropy change can be negative!) 

Note also that the 1
st
 law for the block integrates to give ( ) ( )1 2 2 1 1 0.4 50 20Q mc T T- = - = ´ ´ - = - kJ.  

The negative sign is expected since energy in the form of heat leaves the block. 

Let us now consider the entropy change for the lake and let us assume that the relationship RQ
dS

T

d
=

Qd
=  

can be applied.   

The temperature of the lake is constant, so the expression integrates to give 1 2 20

300

Q
S

T

--
D = = =

Q-
=

Q

3
=  

0.067 kJ/K. 

Thus the entropy change for the universe is: 0.062 0.067 0.005univerS S SD = D +D = - + == 0 kJ/K 

 

 

 

 

 

 

 

 

T1=350K 

T
l
=300K 
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The Unsteady Flow Entropy Equation 

Recall that the classical definition for entropy in differential form is RQ
dS

T

d
= , where 

RQd  is an 

increment of heat reversibly applied.  An increment in entropy can also be considered to be formed in two 

parts, i.e. e idS S Sd d= + , where e

Q
S

T

d
d =  (called the exchange entropy) and 0iSd ³  is associated 

with entropy production and irreversibility.  In the event of a reversible increment then 0iSd =  and 

R
e

QQ
dS S

T T

dd
d= = = .  The relationship e idS S Sd d= +  is directly related to the Clausius inequality 

0
C

Q

T

d
£ò , since 

 

0 0e i i i
C C C C C C C

Q Q
dS S S S S

T T

d d
d d d d= = + = + Þ = - £ò ò ò ò ò ò ò  

 

where the result 0
C

dS =ò  is a consequence of entropy being a property and a cyclic process. 

A rate equation can also be written, i.e. e iS S S= +e iS S Se ie iSe ie i , which is a form appropriate for a control volume 

although any transfer of entropy resulting from material transfer at the control surface must be accounted 

for. 

 

Consider a control volume where an elemental volume of material exiting at dA  is dAdt×v n  from 

which it can be deduced that the elemental mass exiting is dAdtr ×v n  and it immediately follows that the 

elemental entropy exiting is s dAdtr ×v n , which can be written as sdmdtmdt . 

 

 

 

 

 

 

 

 

 

 

The rate form of the entropy equation for an open system follows and is 

 

cv
i

dS q
sdm dA S

dt TG G

+ = +ò ò
q

A SAA iSiS
q

dA
q

T
dA

q
òmm òmmm

q
dA

q
dA

q
 

where cvS sdm
W

= ò  and i iS s dm
W

= òS si ii iòi ii ii idmi ii is dmi ii i , and for the case of a stationary control volume dm dA= r ×v nm dr dd . 

It is worth contrasting this with the transport equation for energy which is of the form 

 

cvdE
edm qdA dA

dt G G G

+ = - ×ò ò ò vm qdAm qdAò òdAAm qdAm qdAm qdA t  

 

where the right hand terms (heat and work rates) of this equation are interpreted as forms of energy 

transfer at the control surface. 

n

 

Control Volume 

W  

G  

Control Surface 
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A similar interpretation is placed on 
q

dA
TGò
q

dA  in the entropy equation with is interpreted to be a form of 

entropy transfer.  Note the absence of a work term in the entropy equation arising because work is an 

ordered form of energy transfer hence does not transfer entropy unlike heat which is a disordered form of 

energy transfer.  The entropy transport equation includes a production term iSiS  that captures entropy 

production in the control volume (arising from irreversibility).  No such similar term is present in the 

energy equation as a consequence of the conservation of energy (the 1
st
 law).  

This approach is a rather modern interpretation on entropy (see Prigogine for a more detailed exposé). 

 

Applications and Entropy production 

 
It is of interest to apply the steady rate form of the entropy equation for an open system  

 

i

q
sdm dA S

TG G

= +ò ò
q

A SAA iSiS
q

dA
q

T
dA

q
òmm

q
dA

q
dA

q
 

along with the SFEE 

sedm Q W
G

= -ò sm Q WsQQ WQ WW  

to some of the devices previously considered. 

Throttling 

Entropy is defined via the expression 
Rq

ds
T

d
=  but the heat flux is for a given reversible process in order 

to evaluate the change in entropy. All real world processes are irreversible! 

§ How can we calculate the change in entropy for an irreversible process? 

Consider a throttling process; 

Applying the SFEE to the throttle gives 

( )2 1 2 10 0h h he dm m e e h h
G

= - = - Þ =ò ( 2 1 2))h h h(m m e e )h h hh h h(( 2 1 2)m e em e e( )2 1 22 1 2)h h hh h h(  

Similarly for entropy

( )2 1 2 10 0i
i i

S
sdm m s s S s s s

mG

= - = + Þ - = = >ò iSiS s0 00 00 00 00 02 1 22 1 22 1 22 1 22 1 22 1 22 1 2( )2 1 2)m m s s( )m m s sm m s s( )2 1 22 1 2) 0 0i i
m

>0 00 0i i0 00 0i ii i0 00 0 . 

where is  is an entropy production term. It has NO analogy with any other field of science. The term 

represents a degradation in the quality of the energy—the capacity of the energy to do work has 

diminishes as a result of flowing through the throttle.  
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Nozzle 

 

     
(1)     (2) 

 

Applying the SFEE to the nozzle gives 

( ) 2 2

2 1 2 2 1 1

1 1
0 0 v v

2 2

h h he dm m e e h h
G

= - = - Þ + = +ò ( 2 1 2))h h h(m m e e )h h hh h h(( 2 1 2)m e em e e( )2 1 22 1 2)h h hh h h(  and similarly for entropy 

( )2 1 2 10 0sdm m s s s s
G

= - = + Þ =ò ( 2 1 2)( )m m s s( )( 2 1 2)m s sm s s( )2 1 22 1 2) . 

The process can, to a reasonable approximation, be assumed to be isentropic (constant entropy).  Note that 

reversible and adiabatic implies isentropic.   

This follows because reversible gives R
e

Q
dS S

T

d
d= =  and adiabatic gives 0RQd = , so 0dS = .   However, 

isentropic does not necessarily imply reversible or adiabatic since 0dS =  gives 0e iS Sd d+ =  or 

0e iS Sd d= - ¹ , if the process happens to be irreversible. 

 

Turbine 

 

 
 

Applying the SFEE to the turbine gives 

( )2 1 2 10h h h s
s s

W
e dm m e e W h h w

mG

= - = - Þ - = - = -ò
WW

W h hW h hW h h2 1 22 1 22 1 2( 2 1 2))h h h(m m e e )h h hh h h(m e em e e( )2 1 22 1 2)h h hh h h( s sws ss s
m

s s  and similarly for entropy 

( )2 1 2 10 0sdm m s s s s
G

= - = + Þ =ò ( 2 1 2)( )m m s s( )( 2 1 2)m s sm s s( )2 1 22 1 2) . 

The process can again to a reasonable approximation be assumed to be isentropic (constant entropy). 
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Heat Exchangers 
 

 

 

 

 

 

 

  

 

 

 

 

 

Applying the SFEE to the heat exchanger gives 

 
he dm 0= Þò m 0= Þ0 ( ) ( )1 1 1 2 2 2 0

f f f f f f

out in out inm h h m h h- + - =( )out in out in) ( )2 2f f f f f f( ) ( 2 22 2m h(1 1 1 21 1 1 2(f f f f f ff f f f f f( ) (1 1 1 2 2 21 1 1 21 1 1 2 2 2( ) (out in out iout in out i) ( =)2 22 22 2

ut inh m h hh m h) (1 1 1 2 2 21 1 1 2 2 21 1 1 2) (1 1 1 2 2 21 1 1 21 1 1 2 2 21 1 1 2) (in out iin out iin o) (  and similarly for entropy 

isdm S= Þò im S ÞiSSiS ÞiSi ( ) ( )1 1 1 2 2 2 0
f f f f f f

i out in out inS m s s m s s= - + - ³(f f f(Si oumi oui ou )f f f f f f) (i out in out in( ) (i out in outi out in out( ) (f f f f f f) ( ³)2 2f f f2 22 2

ins m s ss m s s) (1 1 1 2 2 21 1 1 2 2 21 1 1 2) (f f f f f f) (1 1 1 2 2 21 1 1 2 2 21 1 1 2 2 21 1 1 2) (i out in outi out in outi out in( ) (f f f(f f f(m s(1 1 1 21 1 1 2(f f f(1 1 1 21 1 1 21 1 1 2(i oui ou(  

 

Entropy production takes place inside the heat exchanger signalling that the heat-exchange process is 

irreversible.  The presence of finite temperature differences signals irreversibility (lost work) since the 

heat transfer taking place could in principle have been used to produce work (i.e. by using a reversible 

heat engine). 

 

 

 
Example question: (on energy degradation) 

Steam at 60bar, dry saturated is fed into a turbine via a throttle valve. The steam leaves the turbine at 0.08 

bar and the turbine is ISENTROPIC (the entropy does not change as it flows through the turbine). 

§ Derive an equation for the turbine work 

Calculate the steam mass flow rate if the turbine is to produce 10MW 

a) Without the throttle valve. 

b) If the steam is throttled to 40 bar prior to entering the turbine. 

Calculate the enthalpies and entropies before and after the valve, and after the turbine. 

 

 

Solution: 

(a) Recall the SFEE 
h

se dm Q W= -ò WWm Q WQQ WQQ WW which for a turbine reduces to ( )2 1 sm h h W- = -2 1 sW2 1 s2 1 s( 2 1 s)( )m h h( )2 1 s2 1 s)hh ) or 

( )s 2 1W m h h= - -W ms 2 1s 2 1mm )s 2 1(h hs 2 1s 2 1(hh(m h(s 2 1s 2 1(m h(m h( . 

 

1 1 1, ,
f f f

in inm h s1 1 1f f f1 1 11 1 1, in,,m h s1 1 11 1 1,,
f ff f1 1 11 1 11 1 1

in inin ,,,  1 1 1, ,
f f f

out outm h s,1 1 1f f f1 1 11 1 1

out out,,m h s1 1 11 1 1, ,, ,
f ff f1 1 11 1 11 1 1

t ot o,,,  

2 2 2, ,
f f f

out outm h s,2 2 2f f f2 2 22 2 2

out out,m h s2 2 22 2 2, ,,
f ff f2 2 22 2 22 2 2

t ot o,  
2 2 2, ,

f f f

in inm h s2 2 2f f f2 2 22 2 2, in in,,m h s2 2 22 2 2,
f ff f2 2 22 2 22 2 2

inin ,  

Heat Exchanger 
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At 60 bar (page 7 or page 5): 
0

sT 275.6 C= , 1 gh h 2784kJ / kg= =  and 

1 gs s 5.890kJ / kgK= = .  Since the turbine is isentropic 2 1s s 5.890kJ / kgK= = .  Examination 

of page 3 at 2p 0.08bar=  reveals gs 8.227kJ / kgK=  and fs 0.593kJ / kgK= .  Similar 

triangles gives 2 f 2 f

fg fg

h h s s 5.890 0.593
0.694

h s 7.634

- - -
= = = .  Thus, 

2 f fgh h 0.694 h 174 0.694 2402 1841kJ / kg= + ´ = + ´ = .  It immediately follows that 

s

2 1

W 10000
m 10.6kg / s

h h 1841 2784
= - = - =

- -
WWW

m sWsWW
. 

 

(b) Recall that the throttling process is an isenthalpic process on neglect of kinetic energy 

components.  Thus at 40 bar the enthalpy at the entrance of the turbine (and exit of throttle) is 

1h 2784kJ / kg= .  Examination of page 4 (at 40 bar) reveals gh 2801kJ / kg=  along with 

0

sT 250.3 C= .  Similar triangles gives 1 f 1 f

fg fg

s s h h 2784 1087
0.99

s h 1714

- - -
= = = .   

Thus, 
1 f fgs s 0.99 s 2.797 0.99 3.273 6.04kJ / kgK= + ´ = + ´ = .  Since the turbine is isentropic 

2 1s s 6.04kJ / kgK= = .  Repeating the process above for 2p 0.08bar=  reveals 

2 f 2 f

fg fg

h h s s 6.04 0.593
0.714

h s 7.634

- - -
= = = .  Thus, 

2 f fgh h 0.694 h 174 0.714 2402 1889kJ / kg= + ´ = + ´ = .  It immediately follows that 

s

2 1

W 10000
m 11.2kg / s

h h 1889 2784
= - = - =

- -
WWW

m sWsWW
.  Energy degradation manifests as an increase in 

mass flow rate to obtain the same power output from the turbine.  

 

Example Question (entropy change in vapours): 

Ammonia, initially at 2
o
C and with a dryness fraction of 0.1 is heated until it reaches the dry saturated 

state. Evaluate the change of entropy. 

 

Solution: Turn to page 13 and observe at 
0T 2 C= , fs 0.749kJ / kgK= and gs 5.314kJ / kgK= , and it 

follows that s = sf + x (sg – sf)=0.749 + 0.1(5.314 – 0.749)=1.2kJ/kgK  

and  ( ) ( ) ( )( ) ( )g g f g f g fs s s s x s s s s 1 x 5.314 0.749 0.9 4.11kJ / kgK- = - - - = - - = - ´ =   

(or simply sg – s = 5.314 – 1.2 = 4.11kJ/kgK) 

 

 

Example Question (entropy change in vapours): 

Dry saturated steam at a pressure of 10 bar is supplied to a turbine. If the turbine expands the steam to a 

pressure of 1 bar, calculate the quality of the steam leaving the turbine, and the shaft power produced for a 

flow rate of 15kg/s 

 

Solution: Recall the SFEE 
h

se dm Q W= -ò WWm Q WQQQ WQ WW  which for a turbine reduces to ( )2 1 sm h h W- = -2 1 sW2 1 s2 1 s( 2 1 s)( )m h h( )2 1 s2 1 s)hh )  or 

( )s 2 1W m h h= - -W ms 2 1s 2 1mm )s 2 1(h hs 2 1s 2 1(hh(m h(s 2 1s 2 1(m h(m h( . 

At 10 bar (page 7 or page 4): 0

sT 179.9 C= , 
1 gh h 2778kJ / kg= =  and 

1 gs s 6.586kJ / kgK= = .  Since the 

turbine is isentropic s2 = s1 = 6.586 kJ/kgK.   
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Examination of page 4 at 
2p 1.0bar=  reveals 

gs 7.359kJ / kgK=  and 
fs 1.303kJ / kgK= .  Similar 

triangles gives 2 f 2 f

fg fg

h h s s 6.586 1.303
0.872 x

h s 6.056

- - -
= = = = .  Thus, 

2 f fgh h 0.872 h 417 0.872 2258 2386kJ / kg= + ´ = + ´ = .  It immediately follows that 

( ) ( )s 2 1W m h h 15 2386 2778 5880kW= - - = - ´ - =W ms 2 1mms 2 1s 2 1s 2 1 )s 2 1( ))s 2 1s 2 1(h h )h h )s 2 1s 2 1((m h(m h(s 2 1s 2 1( . 

 

Entropy as a property 

Since entropy is a property it can be related to other properties via the two-property rule, so can be read 

from steam tables or related via a thermodynamic identity. 

 

The Central Equation of Thermodynamics 

 
For a closed system, energy transfers that take place can be evaluated from the First Law (in terms of 

specific quantities), i.e. 

du q w= d -d  

 

For a reversible process involving a resisted expansion with reversible heat transfer w pdd = n and 

Rq Tdsd = , which on substitution leads to a rather important equation (sometimes referred to as the 

central equation of thermodynamics), i.e. 

 

Tds du pd= + n  (or TdS dU pdV= + ) 

 

Observe that this equation only involves state variables and consequently applies for all processes (on 

simple systems) irrespective of whether or not the process is reversible.  This is a significant advance 

since this equation provides a general relationship between p , n , T  and s .  It is in essence a 

thermodynamic identity since it is not necessary to inquire whether the process is reversible or irreversible 

to apply it. 

 

Note also that h u p= + n , giving dh du pd dp= + n+n  which on substitution gives  

 

Tds dh dp= -n  

 

Entropy for solids and liquids 

Under the assumption that a solid or liquid is incompressible, then d! = 0 and the central equation of 

thermodynamics ( Tds du pd= + n ) reduces to  "#$ = #%.  

 Setting #% = &#" for a constant specific heat capacity c, we obtain #$ = & '(( , which integrates to give  

$) * $+ = &,- .")"+/ 

which is a relatively simple relationship for determining specific entropy change for an incompressible 

solid or liquid. 

4 

 

U
ni

ve
rs

ity
 o

f M
an

ch
es

te
r 

- 
D

r 
A

m
ir 

K
es

hm
iri



CHAPTER 8: ENTROPY 

MODERN THERMODYNAMICS  E n t r o p y  | 8.14 

 

Entropy for ideal gases 

 

When dealing with vapours, entropy changes can be found using the steam tables. For ideal gases, analytic 

relations can be written down for the entropy change during a process in terms of other properties.  

 

The starting equation is the all-important central equation of thermodynamics, i.e.  Tds du pd= + n  and 

in view of the identities p RTn =  and 
vdu c dT= , this equation transforms into 

 

v v

dT p dT d
ds c d c R

T T T

n
= + n = +

n
. 

 

If the gas is perfect, then (by definition) vc const.=  and this relation can be integrated directly to obtain 

2 2
2 1 v

1 1

T
s s c ln R ln

T

æ ö æ ön
- = +ç ÷ ç ÷nè ø è ø

 

 

From the definition of a specific quantity, S ms=  and hence it follows that 

2 2
2 1 v

1 1

T
S S m c ln R ln

T

æ öæ ö æ ön
- = +ç ÷ç ÷ ç ÷ç ÷nè ø è øè ø

 

 

If the gas is ideal, then ( )Tcc vv = , and  

 
2

1

T

v 2
2 1

1T

c
s s dT R ln

T

æ ön
- = + ç ÷nè ø

ò . 

 

An alternate but equivalent equation for the change of entropy can be derived from the equation

Tds dh dp= -n , which on substitution of p RTn =  and pdh c dT=  gives 

p

dT dp
ds c R

T p
= -  

For a perfect gas, integration of this relationship provides 

 

2 2
2 1 p

1 1

2 2
2 1 p

1 1

T p
s s c ln R ln

T p

T p
S S m c ln R ln

T p

æ ö æ ö
- = -ç ÷ ç ÷

è ø è ø

æ öæ ö æ ö
- = -ç ÷ç ÷ ç ÷ç ÷è ø è øè ø

 

 

whilst for an ideal gas, ( )Tcc pp =  and 

2

1

T

p 2
2 1

1T

c p
s s dT R ln

T p

æ ö
- = - ç ÷

è ø
ò  
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The isentropic process in a perfect gas 

 

Recall that an isentropic process is one in which ds 0=  and in the case of a perfect gas 

 

( ) ( )

v p

v p

dT d dT dp
ds 0 c R c R

T T p

1dT d dT dp
0 c 1 c

T T p

n
= = + = -

n

g -æ önæ ö= + g - = -ç ÷ç ÷n gè ø è ø

 

 

where g  the ratio of specific heats is 
p

v

c

c
g =  and where use is made of p vR c c= - . 

Integrating these equations gives us two equivalent ways of specifying an isentropic process. One way 

specifies the process in terms of T and v, while the other specifies the process in terms of T and p. 

 

( ) ( )
2 2 2 2

1 1 1 1

1

1

2 2 1 1

1 1
1 1

2 2

1T T p
0 ln 1 ln ln ln

T T p

T T p
ln ln

T
T p

æ ög-
ç ÷gg- è ø

g- æ ög-
ç ÷gè ø

g -æ ö æ ö æ ö æ ön
= + g - = -ç ÷ ç ÷ ç ÷ ç ÷n gè ø è ø è ø è ø

æ ö
æ ö ç ÷n

= =ç ÷ ç ÷nè ø ç ÷
è ø

 

 

This then implies that an isentropic process is one that satisfies 

 
1

1T const. or Tp const.

æ ö-g
ç ÷gg- è øn = =  

 

Finally, an isentropic process can also be described by using the ideal gas equation of state in either of the 

above two equations to obtain  

p const.gn =  

In most engineering applications, this last equation is the most common way of expressing an isentropic 

process 

 

 

An isentropic process in a perfect gas satisfies: 

.const.,constconst.,

1

1 ===
÷÷
ø

ö
çç
è

æ -

- gg
g

g pvTpTv  
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Example Question: 

Air, initially at 298K is reversibly heated to 505K. If the heating process is isochoric, calculate  

a) The change in entropy of the gas 

b) The heat supplied for kg of gas 

For air, assume perfect gas behaviour, with R=287J/kgK, J/kgK718=vc  and 4.1=g  

 

Solution:  

(a) The starting equation is the central equation of thermodynamics, i.e.  Tds du pd= + n  and in 

view of the identities p RTn =  and vdu c dT= , this equation transforms into 

v v v

dT p dT d dT
ds c d c R c

T T T T

n
= + n = + =

n
, which integrates to give 

2
2 1 v

1

T 505
s s c ln 718 ln 378.72kJ / kgK

T 298

æ ö æ ö- = = ´ =ç ÷ ç ÷
è øè ø

. 

(b) In view of the fact that the process is reversible Rq Tdsd = , where v

dT
ds c

T
= , which yields 

R vq c dTd = .  This integrates to give 

( ) ( )
2

1

T

1 2 v v 2 1

T

q c dT c T T 718 505 298 148.6MJ / kg- = = - = ´ - =ò . 

 

 

 

Example question: Demonstrate for an ideal gas (i.e. one satisfying p RTn = ) that the intrinsic specific  

internal energy u is a function of temperature only. 

 

Solution:  Experimental evidence for this was presented in previous notes but it is of interest to confirm 

whether this can be established analytically with knowledge of the state equation p RTn =  and the central 

equation of thermodynamics Tds du pd= + n . 

Assume initially that ( )u u T,= n  along with ( )s s T,= n .  It follows that 
T

u u
du dT d

T n

¶ ¶æ ö æ ö= + nç ÷ ç ÷¶ ¶nè ø è ø
 

and likewise 
T

s s
ds dT d

T n

¶ ¶æ ö æ ö= + nç ÷ ç ÷¶ ¶nè ø è ø
.  Substitution into Tds du pd= + n  gives 

T T

s s u u
T dT T d dT p d

T Tn n

é ù¶ ¶ ¶ ¶æ ö æ ö æ ö æ ö+ n = + + nç ÷ ç ÷ ç ÷ ç ÷ê ú¶ ¶n ¶ ¶nè ø è ø è ø è øë û
 

 

In view of the independence of T and n  it follows that v

s u
T c

T Tn n

¶ ¶æ ö æ ö= =ç ÷ ç ÷¶ ¶è ø è ø
 and 

T T

s u
T p

¶ ¶æ ö æ ö= +ç ÷ ç ÷¶n ¶nè ø è ø
, which can also be written as 

T T T

s 1 u p 1 u R

T T T

¶ ¶ ¶æ ö æ ö æ ö= + = +ç ÷ ç ÷ ç ÷¶n ¶n ¶n nè ø è ø è ø
. 

 

The next step is a little tricky but differentiation of this expression with respect to T gives 

148.6 kJ/kg 
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2 2

2

T

s 1 u 1 u

T T T T

¶ ¶ ¶æ ö= - ç ÷¶ ¶n ¶ ¶n ¶nè ø
 but this must match 

2 2s 1 s

T T T

¶ ¶
=

¶n¶ ¶n¶
, which is obtained on 

differentiation of 
s 1 u

T T Tn n

¶ ¶æ ö æ ö=ç ÷ ç ÷¶ ¶è ø è ø
 with respect to n .  It immediately follows that 

T

u
0

¶æ ö =ç ÷¶nè ø
 or to 

put it another way ( )u u T= . 

 

T-s diagrams 

 
Recall that two independent thermodynamic properties are sufficient to characterise the thermodynamic 

state of a simple system.  Although restricting our attention thus far to p-v, T-v or p-T graphs it is possible 

utilise entropy too as an independent variable in describing thermodynamic processes. Of particular 

interest is the plotting of processes on T-s diagrams.  

 

Observe that with a process on a p-v diagram then, providing certain restrictions are adhered to (i.e. quasi-

static behaviour) then the area under the curve is equal to the work done by the process. By analogy, with 

a process on a T-s diagram, and provided certain restrictions are adhered to (i.e. the process is reversible), 

then the area under the curve can be equated to the heat transfer during the process. 

 

Reversible processes on the T-s diagram 

Recall that 
Rq

ds
T

d
= , or equivalently Rq Tdsd = . 

Consider  a system undergoing a reversible change of state and 

let us draw that change of state on a T-s diagram. 

 

As the system passes through a sequence of equilibrium states, a 

quantity of heat is transferred to the system Rqd . 

 

The total area under the curve is: 

2

1 2

1

q Tds- = ò  for a reversible 

process.  

 

Reversible, adiabatic (isentropic processes) 

 

A particularly important process, which is encountered many 

times in thermodynamics, is an isentropic process. An isentropic 

process is one in which the entropy of the system does not 

change  

 

Since 
Rq

ds
T

d
= , where Rqd  is the reversible heat flux. As our 

system is reversible and adiabatic,  

Rq q 0d = d =  

hence 0d =s .  

 

On the T-s diagram, isentropes appear as vertical lines.  

 

 

Note that an isentropic process need be neither reversible nor adiabatic. 
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Irreversible processes 

For irreversible processes ( )Rqq ¹  

q
ds

T

d
>  

It follows immediately that  

ò¹-

2

1

21 dsTq  

for irreversible processes.  

 

The way we remind ourselves of this fact is as follows. 

In the sketch on the left, the (unknown) irreversible path is 

drawn as a dotted line joining state points 1 and 2. The 

shaded area under the curve (which, for a reversible process 

represents the heat transfer) can ‘escape’ through the dotted 

lines and hence q Tdsd ¹ . 

 

 

In summary: 

§ Entropy change between any two state points can always be evaluated, because entropy is a property 

§ Entropy change and absolute temperature cannot always be related to the actual heat supplied to the 

system. Heat transfer and entropy changes are only related for reversible processes. 

 

 

T-s diagram for perfect gases 
 

For a particular perfect gas the following processes are of particular interest: 

1. Isothermal 

2. Reversible adiabatic 

3. Isobaric 

4. Isochoric 

 

1. Isothermal process 

 

 

 

This implies that during the process, dT 0= . Hence an 

isothermal process on the T s-  graph is horizontal 
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2. Reversible adiabatic process 

 

 

 

 

A process which is reversible and adiabatic is isentropic, 

hence ds 0= . An isentropic process on the T-s diagram is 

vertical 

 

 

 

 

 

 

3. Isobaric process 

Starting from the relation 

p

dT dp
ds c R

T p
= -  

We observe that dp 0= . Integrating the equation (recall the 

gas is perfect and hence .const=vc ) gives 

2
2 1 p

1

T
s s c ln

T

æ ö
- = ç ÷

è ø
 

rearranging this provides 

2 1
2 1

p

s s
T T exp

c

æ ö-
= ç ÷ç ÷

è ø
 

 

4. Isochoric process 

Given 

v

dT d
ds c R

T

n
= +

n
 

and for an isochoric process d 0n = , and on integration 

yields 

2 1
2 1

v

s s
T T exp

c

æ ö-
= ç ÷

è ø
 

 

 

 

Note that the only difference between the isochoric and isobaric 

processes is the specific heat used in the exponential.  Since 

vp cc >  it follows that for a given initial temperature 1T , and a 

given change in entropy 2 1s s- , an isochoric process has a 

higher final temperature than an isobaric process, i.e. the curves 

of the isochors on a T-s diagram are always steeper than the 

curves of the isobars. 
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Heat Engines revisited 

Let us revisit heat engines to test out the new version of the 2
nd

 law.  

Consider the possibility of a heat engine operating in a cycle but supplied only from a single thermal 

reservoir at temperature 1T  – this is ruled out by the Kelvin-Planck version of the 2
nd

 law. 

The entropy change in the thermal reservoir 

1
1

1

Q
S

T
D = -  is the only entropy change that is taking 

place.  The entropy flows out of the reservoir in the 

form 1

1

Q

T
-  into a device that suffers no net entropy 

change (operating on a cycle).  The entropy of the 

universe considered here suffers a net decrease in 

entropy, i.e. 1
1

1

Q
S S 0

T
D = D = - < , but this is contrary to the 2

nd
 law, thus not possible. 

Consider the Clausius version of the 2
nd

 law (as depicted in the 

diagram) rules out the possibility of a cyclic device being able 

to transfer heat from a cold body to a hot body without work. 

In this case the total entropy change is 

1 2
1 2 1

1 2 1 2

Q Q 1 1
S S S Q 0

T T T T

æ ö
D = D +D = - = - <ç ÷

è ø
, since 

2 1T T< , which is contrary to the 2
nd

 law. 

 

 

In the case of a reversible engine as that depicted in the figure below, the total entropy change is 

1 2
1 2

1 2

Q Q
S S S 0

T T
D = D +D = - + = , since 2 2

1 1

T Q

T Q
= . 

More generally 1 2
1 2

1 2

Q Q
S S S 0

T T
D = D +D = - + ³ , which 

implies 2 2

1 1

Q T

Q T
- £ -  and 2 2

1 1

Q T
1 1

Q T
- £ -  hence th Rh £ h . 

This proves that Carnot engines are the most efficient and the 

reason why is that entropy is not produced. 

Heat spontaneously flows from a hot to a cold body and such 

spontaneity can be used to produce work. 
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T-s diagrams and cyclic processes 

 

The plant layout for a vapour cycle power plant is depicted below along with how we would represent this 

configuration as a heat engine operating between two thermal reservoirs (i.e. a ‘direct’ heat engine). 

 

 

Assume that all components of the plant are internally and externally reversible. From the first law applied 

to the plant 
C C

W Qd d=ò ò  and, furthermore 
C C

Q TdSd =ò ò . 

 

It follows that the work done during a reversible cyclic process is represented by the area enclosed on a 

T-s diagram. 

 

 

 
T-s diagram for a pure substance 

A T - s diagram for a substance which changes phase during heating is depicted in the figure below.   

 

 

 

Two constant pressure lines are shown on the 

diagram.  At the lower pressure, the fluid is first 

heated as a liquid until it reaches the saturated 

liquid line.  At this point further heating does not 

raise the temperature, but provides the latent heat 

of evaporation.  After reaching the saturated 

vapour line, the fluid temperature rises as heating 

continues.  At the higher pressure (which, here, is 

above the critical pressure), the fluid does not go 

through an evaporation process, and passes from 

the ‘liquid’ to ‘vapour’ phase without addition of 

latent heat. 
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In the power plant configuration shown above, the T-s diagram appears as below 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are two types of reversible process shown in the figure above. 

 

i. Isothermal reversible processes: these are processes that take place at constant temperature, and 

are depicted by lines ab and cd on the T - s diagram. 

 

ii. Adiabatic, reversible processes: these are processes that take place at constant entropy on the T-s 

diagram. As mentioned previously, these lines are called isentropes, and the processes are termed 

isentropic. Remember, all reversible, adiabatic processes are isentropic, but not all isentropic 

processes are reversible or adiabatic. 

 

The four processes shown on the figure make up a process, a-b-c-d-a, and this is the process undertaken 

by the working fluid in the reversible heat engine formed by our power plant.  The cycle consists of: 

 

· two isothermal processes, a-b (in the boiler) and c-d (in the condenser); 

· two isentropic processes, d-a (in the feed pump) and b-c (in the turbine). 

 

These processes are all reversible, and hence TdsqR =d  for unit mass. 

For the isotherm, a-b: [ ] ( )aba

b

a

abR ssTsTq -== ò d . 

For the isentrope, b-c: [ ] 0=ds because ,0d == ò
c

b

bcR sTq . 

For the isotherm, c-d: [ ] ( )adc

d

c

cdR ssTsTq -== ò d . 

For the isentrope, d-a: [ ] ò ===
a

d

daR ssTq 0d because,0d . 

 

Hence, for the cycle:   

 
 

Sc 
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[ ] [ ] [ ] [ ]
( ) ( )0 0

R R R R Rab bc cd daC

a b a c d c

q q q q q

T s s T s s

d = + + +

= - + + - +

ò
 

 

but ( ) ( )cdab ssss --=- , and thus 

 

( )( )R a c b a
C

q T T s s area of cycle a - b -c -d on the T -s diagramd = - - =ò         

 

Now, from the First Law, R
C C

q wd d=ò ò , and hence ( )( )a c b c
C

w T T s sd = - -ò . 

 

Recapping with reference to the processes shown in the figure: 

· For a reversible cycle, the work done is the area enclosed on the T-s diagram, i.e. it is depicted 

by the area a-b-c-d-a; 

· The heat supplied to a reversible cycle is depicted by the area a-b-f-e-a; 

· The heat rejected from a reversible cycle is depicted by the area d-c-f-e-d. 

 

 
 

 

The efficiency of a reversible cycle is given by: 

 

( )( )
( )

a c b a a c c

a b a a a

T T s s T T T
1

T s s T T

- - -
h = = = = -

-
 

 

This value of efficiency is in agreement with that obtained from the definition of absolute temperature. 

The cycle undergone by the working fluid in our power plant is referred to as a Carnot cycle. Engine 

cycles are discussed in greater detail in the 2
nd

 year. The Carnot cycle is an ideal engine cycle, and cannot 

be realised in practice. 

 

 

Example Question: 

An aircraft gas turbine comprises the following pieces of equipment: i) a compressor, ii) a combustion 

chamber, iii) a turbine, and iv) a propelling nozzle. 

Boiler 

P
u

m
p

 

T
u

rb
in

e 

Condenser 
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(a) Draw a schematic of the gas turbine.  

 

(b) Air is drawn into the turbine at a pressure of 1bar, 278K. At the outlet of the compressor, the pressure 

is 10 times greater than at inlet. In the combustion chamber, the gas is heated at constant pressure to 

1500K whereupon it is fed into the turbine. If the work produced by the turbine must be the same as that 

consumed by the compressor, find the temperature and pressure ratios across the turbine.  

 

(c) Plot the process undergone by the air as it passes through the engine from inlet to turbine exhaust on a 

T-s diagram. 

 

For air, assume perfect gas behaviour, with R = 287 J/kgK, cv = 718J/kgK and γ =1.4 

 

Solution: 

(a) A schematic for the gas turbine (excluding the nozzle) is: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Let us consider each component in turn and assume steady condition so the SFEE applies, i.e. 

 
h

se dm Q W= -ò WWm Q WQQQ WQQ WW  or 
h

se q wD = -  

The compressor can be assumed to be isentropic and satisfies 
c c c

2 1 sh h w- = -  and in view of the identity 

pdh c dT=  it follows that ( )c c c c c

2 1 p 2 1 sh h c T T w- = - = - .   

Recall that for an isentropic process: 
1 1.4 1

2 2 2c c
1.4

c c2 2 7 7 7
2 1c c

1 1

T p 10
10 T T 10 278 10 536.7K

T p 1

æ ög- -æ öç ÷ ç ÷gè ø è ø
æ öæ ö æ öç ÷= = = Þ = ´ = ´ =ç ÷ ç ÷ç ÷è øè ø è ø

. 

For the combustion chamber the SFEE reduces to  
b b b

2 1h h q- =  or ( )b b b

p 2 1c T T q- = . 

For the turbine  

( )t t t t t

2 1 p 2 1 sh h c T T w- = - = -   

 

c c

1 1T 278K,P 1bar= =  t t

2 2T ,P  

b b

2 2T 1500K,P 10bar= =  
b c b c

1 2 1 2T T ,P P 10bar= = =  

t b t b

1 2 1 2T T 1500K,P P 10bar= = = =  
c c c

2 2 1T ,P 10P 10bar= =  

C  T  

bQbQ  

To nozzle  

shaft  

C
o

m
b

u
st

io
n

 

C
h

a
m

b
er
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and in view of the requirement that 
t t

s cw w= -  it follows that  

( )t t c c t t c c

2 1 2 1 2 1 1 2T T T T T T T T 1500 278 536.7 1241.3K- = - - Þ = + - = + - =  

 

Assuming an isentropic process for the turbine gives 

1.4
7 7 7t t 1 1.4 1

t t2 2 2 2 2
2 1t t

1 1

p T 1241.3
0.83 p p 0.83 10 0.83 5.21bar

p T 1500

æ ög æ öç ÷ ç ÷g-è ø -è ø
æ öæ ö æ ö æ öç ÷= = = Þ = ´ = ´ =ç ÷ ç ÷ ç ÷ç ÷è øè ø è ø è ø

 

 

(c) T-s diagram of the process: 

 

  
Isobar 

Isentropes 
C 

B 

T 
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READING EXERCISE: The entropy change of the universe 

In the following subsection, we discuss the final corollary of the second law 

Corollary 6 

The entropy change of an isolated system always increases or, in the limit, stays the same 

 

Proof: 

Consider two bodies at different temperatures 

Assume that 1 2T T> , and that the heat 

transfer takes place reversibly. Now, 

1

1

2

2

Q
dS for body 1

T

Q
dS for body 2

T

d
= -

d
=

  

  

 

 

The quantity of energy in the system is conserved—the first law is obeyed. Let us examine the total 

change of entropy for the two bodies 

1 2 1

2 1

1 2
1

1 2

1 1
dS dS dS Q

T T

T T
Q

T T

æ ö
= + = d -ç ÷

è ø

æ ö-
= d ç ÷

è ø

 

Here, Qd  represents the magnitude of the heat transfer. As 21 TT > , it follows that  

1 2
1

1 2

T T
dS Q 0

T T

æ ö-
= d >ç ÷

è ø
 

The entropy of the combined system has increased. When we are describing changes in entropy, reference 

is often made to the entropy change of the universe. This seems like a daunting concept, but is really 

quite straightforward. The analysis just conducted has been on two thermodynamic systems. There is no 

reason why one of these ‘systems’ could not be the ‘surroundings’.  

 

The word spontaneous mentioned above refers to a change not needing to be driven by work.  The flow of 

energy from a hot reservoir to a cold reservoir in the form of heat is a spontaneous change.  A particular 

manifestation of the second law is that: 

 

The entropy of the universe (system plus surrounding) increases in the course of any spontaneous 

change.   
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Example question: Explain how the cooling of a hot cup of coffee increases the entropy of the universe. 

Solution: The coffee cools by heat transfer, its entropy decreases. Similarly, as heat is transferred into the 

room, its entropy increases. Here is the crucial point: the amount by which the room’s entropy increases is 

greater than the amount by which the coffee’s entropy decreases. The result as far as the ‘universe’ is 

concerned is that the total entropy contained in the ‘universe’ has increased. 

 

Example question: Explain how the entropy of the stellar universe increases. 

Solution: Let body (1) represents all the stars in the universe, and body (2) represents the vacuum of 

space. Body (1) is a heat source at several thousand degrees Kelvin. The microwave background radiation 

is at about 3K. 1 2T T>>  and the entropy of the universe is increasing. Eventually (depending on whose 

cosmological model you believe!), the entropy of the universe will reach a maximum—this corresponds to 

an equilibrium UNIFORM temperature for the whole universe. Although energy has been conserved 

during the evolution of the universe, its quality has degraded to the point where it can no longer drive 

processes such as stellar nucleosynthesis, gravitational clumping of matter, planet formation or life. This 

final end state is called the heat death. 
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APPENDIX: Additional examples to understand entropy and 2
nd

 law 

The Second Law Revisited 

The second law of thermodynamics is one of the most fundamental laws of nature, having profound 

implications. In essence, it says this: 

The second law - The level of disorder in the universe is steadily increasing. Systems tend to move from 

ordered behaviour to more random behaviour. 

One implication of the second law is that heat flows spontaneously from a hotter region to a cooler region, 

but will not flow spontaneously the other way. This applies to anything that flows: it will naturally flow 

downhill rather than uphill. 

If you watched a film forwards and backwards, you would almost certainly be able to tell which way was 

which because of the way things happen. A pendulum will gradually lose energy and come to a stop, but it 

does not pick up energy spontaneously; an ice cube melts to form a puddle, but a puddle never 

spontaneously transforms itself into an ice cube; a glass falling off a table might shatter when it hits the 

ground, but the pieces will never spontaneously jump back together to form the glass again. Many 

processes are irreversible, and any irreversible process increases the level of disorder. One of the most 

important implications of the second law is that it indicates which way time goes - time naturally flows in 

a way that increases disorder. 

The second law also predicts the end of the universe: it implies that the universe will end in a "heat death" 

in which everything is at the same temperature. This is the ultimate level of disorder; if everything is at the 

same temperature, no work can be done, and all the energy will end up as the random motion of atoms and 

molecules. 

Entropy 

We mentioned earlier that a measure of the level of disorder of a system is entropy. Although it is difficult 

to measure the total entropy of a system, it is generally fairly easy to measure changes in entropy using 

some of the equations covered in this chapter.  

The second law of thermodynamics can be stated in terms of entropy. If a reversible process occurs, there 

is no net change in entropy. In an irreversible process, entropy always increases, so the change in entropy 

is positive. The total entropy of the universe is continually increasing. 

There is a strong connection between probability and entropy. This applies to thermodynamic systems like 

a gas in a box as well as to tossing coins. We will look at these 2 examples in more detail below. 

Example1: Gas in a box 

With a gas in a box, the probability that all the gas molecules are in one corner of the box at the same time 

is very small (for a typical box full of 10
20

 molecules or more, incredibly small); this is therefore a low 

entropy state. It is much more likely that the molecules are randomly distributed around the box, and are 

moving in random directions; this high disorder state is a considerably higher entropy state. The second 

law does not rule out all the molecules ending up in one corner, but it means it is far more likely that the 

molecules will be randomly distributed, and to move towards a random distribution from an orderly 

distribution, as opposed to the other way around. 

Example2: Tossing a coin 

If you have four pennies, for example, the likelihood that all four will land heads up is relatively small. It 

is six times more likely that you will get two heads and two tails. The two heads - two tails state is the 

most likely, shows the most disorder, and has the highest entropy. Four heads is less likely, has the most 

order, and the lowest entropy. If you tossed more coins, it would be even less likely that they would all 

land heads up, and even more likely that you would end up with close to the same number of heads as 

tails. 
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Tutorial Questions 
 
Calculation of entropy 

1. A mass of 10 kg of water at 0°C is brought into contact with a large heat reservoir at 100°C. 

 (a)  When the water has reached 100°C what has been: 

        (i)  the change of entropy of the water; [+13.065kJ/K] 

        (ii)  the change of entropy of the reservoir;  [-11.223kJ/K] 

        (iii)  the change of entropy of the universe?  [+1.842kJ/K] 

(b)   If the water had been heated from 0°C to 100°C by first bringing it into contact with a 

reservoir at 30°C and then a reservoir of 100°C, what would have been the change in the 

entropy of the universe?    [+1.065kJ/K] 

(c) Explain how the water could have been heated to give no change in the entropy of the 

universe.  [Use an infinite number of reservoirs, so that 0®DT ] 

 

2. A system contains a fluid at a temperature of 70°C and 1 bar. It undergoes a reversible process during 

which the temperature of the system remains constant.  Given that the heat transfer to the fluid during 

the process is 100 kJ. evaluate: 

(i) The increase in entropy.  [0.292kJ/K] 

If the system has a mass of 2.31 kg;   

(ii) Evaluate the increase in specific entropy of the system. [126.2J/kgK] 

(iii) If a second fluid system, identical to the first one undergoes an irreversible isothermal 

process from the same initial state to the same final state as above; and the heat transfer to 

the fluid in this irreversible process is 80 kJ; evaluate the increase in entropy of the fluid. 

[trick question: same answer as (ii)] 

3. Calculate the gain in entropy when 1 kg of water at 30°C is converted into steam at 150°C and then 

superheated to 300°C, with the process taking place at constant pressure.  Take cp(water) = 4.2 kJ/kg 

K, cp(steam)  = 2.1 kJ/kg K, hfg [kJ/kg] = 2340 - 1.5 t, where t = temperature in °C. [7.039 kJ/kgK] 

 

Isentropic expansion of steam (use tables) 

4. Superheated steam at 10 bar and 250°C expands isentropically to 1 bar.  Find the final condition. [p=1 

bar, x=0.929] 

 

5. This question compares the effects of performing a process in a constant volume (closed) or constant 

pressure (open) system 

(i) A cylinder contains 1 kg of steam at 6 bar and dryness is 0.9. The piston is moved so that the 

steam expands reversibly and adiabatically until the pressure becomes 1 bar.  Determine the 

work done on the piston. [245kJ/kg] 

(ii) Steam flows steadily through a turbine. At entry the pressure is 6 bar and dryness is 0.9 and 

the exhaust pressure is 1 bar.  Determine the work done per kg of steam flow assuming 

reversible adiabatic expansion. [276.4kJ/kg] 

 

6. A cylinder contains 0.015 m
3
 of dry saturated steam at 8 bar. The steam expands reversibly and 

adiabatically until the pressure becomes 0.8 bar.  Determine the final volume and the work done by 

the steam during the expansion. [0.114 m
3
, 21.25 kJ] 
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7. Steam flows steadily through a throttle valve.  On the upstream side of the valve the pressure is 17 bar 

and the dryness is 0.95 while on the downstream side the pressure is 13 bar.  The steam then flows 

through a turbine with exhaust pressure of 0.14 bar.  Determine the percentage reduction in turbine 

output due to the throttling of the steam which has occurred in the valve.  Assume the expansion in the 

turbine is isentropic. [5% reduction] 

 

8. Wet steam flowing steadily along a pipe at 20 bar is throttled to 7 bar before being expanded 

isentropically in a nozzle.  The temperature before the nozzle is 175°C and the back pressure is 0.2 

bar.  Determine the exit velocity of the steam from the nozzle.  Determine also the exit velocity if no 

throttling had occurred before the nozzle. [1005 m/s, 1190 m/s] 
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